Problem Set 1 Differential Equations Due 1/25/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Find a general solution to the differential equation $\frac{d P}{d t}=k P(1-P)$.
2. [Blanchard et al. $3^{\text {rd }} \mathrm{Ch} .1$ Review] The air in a small rectangular room 20 ft by 5 ft by 10 ft is 3% carbon monoxide. Starting at $t=0$, air containing 1% carbon monoxide is blown into the room at the rate of $100 \mathrm{ft}^{3}$ per hour and well mixed air flows out through a vent at the same rate.
a) Write an initial-value problem for the amount of carbon monoxide in the room over time.
b) When will the air in the room be 2% carbon monoxide?
c) What will happen to the level of carbon monoxide in the air over the long term?
3. Do problem \#24 in §1.3.
