Foundations Induction Examples 1/23/08

Proposition: The product of any two consecutive natural numbers is even.

Proof: Well, let's proceed by induction to prove that the statement " n times $n+1$ is even" holds for all natural numbers n. Suppose that the first integer is 1 , so the second is 2 . Then $1 \times 2=2=2(1)$ is even since it's 2 times an integer.

Now s'pose the statement is true for n, so that $n(n+1)=2 m$ for some integer m, and we need to show that $n+1$ times $n+2$ is even. But

$$
\begin{array}{rlr}
(n+1)(n+2) & =n^{2}+3 n+2 & \\
& =\left(n^{2}+n\right)+(2 n+2) \\
& =2 m+2(n+1) \\
& =2(m+n+1) . & \text { [by our inductive hypothesis] }
\end{array}
$$

So since $m+n+1$ is an integer, we see that $(n+1)(n+2)$ is even. \{Then since the statement has been shown true for $n=1$, and since whenever the statement is true for n it is also true for $n+1$, we can conclude by mathematical induction that the statement holds true for all natural numbers n.

It's perfectly acceptable to abbreviate the entire passage in braces above as "So by induction the statement holds for all natural numbers n.

Def.: If C is a collection of real numbers, we say b is an upper bound for C iff $(\forall x \in \mathrm{C}) b \geq x$.
Proposition: Any collection of exactly n distinct real numbers (where n is a natural number) has an upper bound.

Proof: Well, let's proceed by induction. Let C be a collection with just one real number in it, and call that number x. Then x itself is an upper bound for C , since $(\forall y \in \mathrm{C}) x \geq y$.

Now s'pose C is a collection with exactly two distinct real numbers in it, and call them x and y. Then either $x \geq y$ or $y \geq x$. In the first case x will be an upper bound for C , since $x \geq x$ and $x \geq y$, and similarly in the second case y is an upper bound for C .

Finally, suppose that any collection with exactly n distinct real numbers in it has an upper bound, and let D be a collection with exactly $n+1$ real numbers. Let's first create a new collection C by taking all of the elements of D except one (label as a that element of D which was omitted from C). Then we know by our inductive hypothesis that C has an upper bound, call it b. Then either $a \geq b$ or $b \geq a$. Thus by the transitive property in the first case a is an upper bound for D , and in the second case b is. So by induction, we've shown that any collection of exactly n distinct real numbers has an upper bound.

