1. a) State the definition of an irrational number.
b) Write the truth table for $\mathrm{P} \Rightarrow \mathrm{Q}$.
2. Determine whether the propositionals $\mathrm{P} \Rightarrow(\mathrm{Q} \vee \mathrm{R})$ and $(\mathrm{P} \Rightarrow \mathrm{Q}) \vee(\mathrm{P} \Rightarrow \mathrm{R})$ are equivalent.
3. Prove that for integers m and $n, m \cdot n$ is odd if and only if both m and n are odd.
4. Prove that $\sqrt{3}$ is irrational.
5. Prove that $\sum_{r=1}^{n} 2^{r}=2^{n+1}-2$.
