1. a) State the definition of an increasing function $f: \mathbb{R} \to \mathbb{R}$.

b) State the definition of an odd function $f: \mathbb{R} \to \mathbb{R}$.

2. Let $f: A \to B$ be invertible. Show that $f^{-1} \circ f = I_A$.

3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be injective functions. Show that $g \circ f$ is injective.

4. a) Show that \mathbb{Z} is denumerable.

b) Show that if A is uncountable and x is an object in A, then $A - \{x\}$ is uncountable.

5. Let $\{A_i \mid i \in \mathbb{N}\}$ be an indexed family of sets, and suppose that A_i is bounded for every $i \in \mathbb{N}$. Let $Z_n = \{m \in \mathbb{N} \mid m \le n\}$. Show that $\bigcup_{i \in Z_n} A_i$ is bounded for all $n \in \mathbb{N}$.