FOUNDATIONS OF ADVANCED MATH 2:00PM MWF SPRING 2008 SH 309

Instructor:	Jonathan White
E-Mail:	JWhite@Coe.Edu
Web Page:	http://www.coe.edu/~jwhite/
Office:	Stuart 316
Office Hours:	11:00-11:25 MWF, 2:00-2:50 T, 3:00-3:50 W, and by appointment
Office Phone:	399-8280
Home Phone:	841-5111 (between 7am and 10pm)
Text:	Sets, Functions, and Logic: An Introduction to Abstract Mathematics, 3rd ed., Devlin
Problem Sets:	There will be several problem sets during the semester. Together these will be worth 200 points (20% of the final grade)
Participation:	Day-to-day class participation, presentations, and snap quizzes will be a prominent aspect of this class, and together will be worth 200 points (20% of the final grade)
Math Culture Points:	Math Culture Points will constitute 200 points (20% of the final grade). These will be earned through participation in various activities outside of class, as detailed on page 3 of this syllabus.
Exams:	There will be four small in-class exams administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These examlets will be worth 50 points (5% of the final grade) each.
	The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth 200 points (20% of the final grade).
Grading:	Grading will approximately follow a 90% A, 80% B, 70% C, 60% D scale.
Makeups:	Late work of any sort will generally not be accepted, and if accepted due to extenuating circumstances will generally be subject to a penalty of 20% of the possible points for each day past due.

This class is intended to achieve several goals, but primary among them is to give some accurate idea of what mathematics actually is. The specific content of the course is secondary, but my hope is to give a good exposure to many topics which are helpful or necessary to further study in mathematics and related fields. These include, but are not limited to, the basics of set theory, functions, logic, and combinatorics.

This course will be profoundly different, both in subject matter and in daily conduct, than what most of you are accustomed to in a math class. Please understand that it's different on purpose, with very clear reasons in mind. You will probably have to find different ways to learn things in this class than in any math class you've taken before. Don't let that be overwhelming, and remember that I'm around to help.

"Doubt everything at least once, even the proposition that two times two equals four." – Georg Christoph Lichtenberg (1742-1799)

Tentative Schedule

		Friday, January 11 th §1.1 - §1.5
Monday, January 14 th	Wednesday, January 16 th	Friday, January 18 th
§2.1 The Language of Math	§2.2 Truth and Implication	§2.3 Quantification
Monday, January 21 st	Wednesday, January 23 rd	Friday, January 25 th
§2.4 More on Quantification	§2.5 Proof Techniques	§2.5 Proof Techniques
Monday, January 28 th	Wednesday, January 30 th	Friday, February 1 st
§2.6 The Integers	§2.7 Mathematical Truth	Examlet 1
Monday, February 4 th	Wednesday, February 6 th	Friday, February 8 th
§3.1 Sets	§3.2 Operations on Sets	§3.3 Real Intervals
Monday, February 11 th §3.4 Absolute Values	Wednesday, February 13 th §3.5 Inequalities	Friday, February 15^{th} §3.6 Arbitrary \cup and \cap
Monday, February 18 th	Wednesday, February 20 th	Friday, February 22 nd
§3.7 Cartesian Products	§3.8 History of Set Theory	Examlet 2
Monday, February 25 th	Wednesday, February 27 th	Friday, February 29 th
§4.1 Introduction to Functions	§4.2 Examples of Functions	§4.3 History of Functions
Monday, March 3 rd	Wednesday, March 5 th	Friday, March 7 th
§4.4 Injectivity and Surjectivity	§4.5 Composition and Inverses	§4.6 Countability
	Spring Break	
Monday, March 17 th	Wednesday, March 19 th	Friday, March 21 st
§4.7 Uncountability	The Continuum Hypothesis	Examlet 3
Monday, March 24 th	Wednesday, March 26 th	Friday, March 28 th
§5.1 Binary Relations	§5.2 Properties of Relations	§5.3 Relations as Sets
Monday, March 31 st	Wednesday, April 2 nd	Friday, April 4 th
§5.4 Relations as Graphs	Student Research Symposium	§5.5 Equivalence Relations
Monday, April 7 th	Wednesday, April 9 th	Friday, April 11 th
§5.6 Functions as Relations	§5.7 ℝ	Examlet 4
Monday, April 14 th	Wednesday, April 16 th	Friday, April 18 th
§5.8 Completeness	§5.9 Sequences	The Peano Axioms
Monday, April 21 st	Wednesday, April 23 rd	

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

Coe's faculty has adopted an academic integrity policy. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.

One of the profound puzzles inherent in teaching mathematics is the question of how to teach students to actually do math. That doesn't mean just carrying out algorithms – the routine procedures that solve routine problems are readily taught by demonstration and practice. But doing math means far more than performing those routine rituals, and unfortunately involves tasks that are not so readily learned by demonstration. For instance, mathematicians are able to read math books – something notoriously difficult for math students, and something with which observation provides little help. Mathematicians are also able to do problems of types they have never seen before – a task for which drill work provides only very limited help.

"The true function of the teacher is to create the most favorable conditions for selflearning. True teaching is not that which gives knowledge, but that which stimulates pupils to gain it. One might say that he teaches best who teaches least."

- John Milton Gregory, 1884

Math Culture Points

A significant portion of the grade for this course will take the form of Math Culture Points. These will be earned through activities outside of class including, but not necessarily limited to, those listed below:

Activity	Points	Maximum
Colloquium Attendance	10	_
Colloquium Presentation	20	2
Meeting Attendance Iowa Section of the MAA (April 25-26 th) Midwest Undergraduate Mathematics Symposium (April 4-5 th) Nebraska Conference for Undergraduate Women in Mathematics (Feb. 8-10 th)	30	2
Mathematics Competition Participation Iowa Collegiate Mathematics Competition (March 8 th) Mathematical Contest in Modeling (Feb. 14-16 th)	20	2
Math Culture Reading Some weeks specific readings will be posted on the course web page With approval, any column on MAA.org With approval, an article from <i>Math Horizons</i> , <i>CMJ</i> , etc.	10	- 5 5
Math Club Activities (when appropriate) Winter Break Book, Movies, Pi Day celebration, Speakers, etc.	10	5

Generally Math Culture Points can be earned for at most two activities in any given week, so you should plan to spread your participation throughout the semester. In each case above, credit assumes both full participation and posting a brief summary/response on Moodle. These reflections should generally be between 100 and 300 words, and include both a brief summary and your personal thoughts on the event.