Exam 2 Calc 2 3/6/2009

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. a) Find L_{2} for $\int_{0}^{0.5} e^{-x^{2}} d x$.
b) Find M_{2} for $\int_{0}^{0.5} e^{-x^{2}} d x$.
2. Set up an integral for the area of the surface obtained by rotating the portion of $y=x^{3}$ on the interval $[0,2]$ about the x-axis.
3. Write out the form of the partial fraction decomposition of the function

$$
\frac{x^{3}-x+1}{x(x-2)\left(x^{2}+x+1\right)\left(x^{2}+1\right)^{3}} .
$$

4. Evaluate $\int_{1}^{\infty} \frac{1}{x^{3}} d x$.
5. Show that $\int u^{4} \sqrt{a^{2}-u^{2}} d u$ can be transformed by an appropriate substitution into $a^{6} \int \sin ^{4} \theta \cos ^{2} \theta d \theta$.
6. Find the length of the curve $y=\ln (\sec x)$ on the interval $[0, \mathrm{p} / 4]$.
7. Derive line 84 on the table of integrals.
8. You have been tasked with writing a section for the forthcoming book Incredibly Rarely Used Techniques in Calculus. The section is to cover integrating combinations of $\csc x$ and $\cot x$. Explain, in terms a typical calculus student can follow, a basic procedure for integrating products of powers of these functions.
9. Suppose that $p(t)=\left\{\begin{array}{cc}\frac{1}{4} e^{-t / 4} & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{array}\right.$ is a p.d.f. representing a probability that a computer armoire purchased from Home Design Solutions breaks within t weeks of purchase.
a) Find the median of this p.d.f.
b) A cumulative distribution function $c(t)$ associated with a given p.d.f. $p(t)$ is a function which, for each value of t, gives the proportion of the sample less than t. Find $c(t)$ for Home Design Solutions computer armoires.
10. Consider the trapezoidal region bounded by $x=0, y=0, x=1$, and a line with y-intercept 1 and slope m.
a) If $m=1$, find the x coordinate of the center of mass of the trapezoidal region.
b) For other positive constant values of m, how large can the x coordinate of the center of mass of the region get?

Extra Credit (5 points possible):
Derive line 117 on the table of integrals.

