Exam 4 Calc 2 4/23/2009

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Write a $5^{\text {th }}$ degree MacLaurin polynomial for $\sin x$.
2. Give an example of a series which converges, but does not converge absolutely.
3. Determine whether the series $\sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{2^{n}}$ converges or diverges.
4. Determine the interval of convergence of the MacLaurin polynomial for $f(x)=e^{x}$.
5. Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converges or diverges.
6. Find the $2^{\text {nd }}$-degree Taylor polynomial for $f(x)=\sqrt[3]{1+x}$ centered at $x=7$.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Dude, I think I'm in trouble. This series stuff is pretty confusing, and all these different tests they've got are pretty crazy. I've got some of it figured out, but what I don't get is are there times when you've gotta use the comparison test instead of the limit comparison?"

Help Biff by answering his questions as clearly as possible.
8. Is $x=1$ included in the interval of convergence of the power series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$?
9. Use a $4^{\text {th }}$-degree MacLaurin polynomial for $\cos \left(x^{2}\right)$ to approximate $\int_{0}^{0.1} \cos \left(x^{2}\right) d x$ to the nearest millionth.
10. Suppose $\sum_{n=1}^{\infty} a_{n}$ is a convergent series with all of its terms positive. What can you say about $\sum_{n=1}^{\infty}\left(\frac{n+1}{n} a_{n}\right)$?

Extra Credit (5 points possible):
What is the sum of the series $\sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{n!}$?

