1. a) Determine whether the propositionals $P \rightarrow Q$ and $\neg Q \rightarrow \neg P$) are equivalent.

b) Determine whether the propositionals $(P \land Q) \Rightarrow R$ and $(P \Rightarrow R) \lor (Q \Rightarrow R)$ are equivalent.

2. If *n* divides *a* and *n* divides *b*, then *n* divides a + b.

3. $\sqrt[3]{2}$ is irrational.

4. Prove that
$$\forall n \in \mathbb{N}, \sum_{r=1}^{n} (2r-1) = n^2$$
.

5. We say that an integer *m* is **congruent to 0 modulo 5** iff m = 5n for some integer *n*. We say that an integer *m* is **congruent to 1 modulo 5** iff m = 5n + 1 for some integer *n*. We say that an integer *m* is **congruent to 2 modulo 5** iff m = 5n + 2 for some integer *n*. We say that an integer *m* is **congruent to 3 modulo 5** iff m = 5n + 3 for some integer *n*. We say that an integer *m* is **congruent to 4 modulo 5** iff m = 5n + 4 for some integer *n*.

a) If a is congruent to 1 modulo 5, then a^2 is congruent to 1 modulo 5.

b) If a is an integer for which a^2 is congruent to 1 modulo 5, then a is congruent to 1 modulo 5.