Examlet 4b Foundations of Advanced Math 4/17/09

1. a) State the definition of a symmetric relation.
b) Give an example of a relation on the set $\{1,2,3\}$ which is reflexive but not transitive.
2. a) Suppose that \equiv is the relation on the set $A=\{a, b, c, d, e\}$ defined by $\equiv=\{(a, a),(a, b),(a, c)$, $(b, a),(b, b),(b, c),(c, a),(c, b),(c, c),(d, d),(d, e),(e, d),(e, e)\}$. Write the equivalence classes corresponding to \equiv out explicitly.
b) Suppose that P is the partition $\{\{1\},\{2,4\},\{3,5\}\}$ of the set $A=\{1,2,3,4,5\}$. Find the relation R corresponding to P.
3. Let R be a relation on a set A which is reflexive, symmetric, and transitive; let S be some other relation on A.
a) Will $R \cup S$ be reflexive?
b) Will $R \cap S$ be symmetric?
c) Will $R \cup S$ be transitive?
4. Let R be the relation on \mathbb{Z} defined by $n \sim m$ iff n and m have a factor (other than ± 1) in common.
a) Pick an element t of \mathbb{Z} and find three other elements of \mathbb{Z} which are related to it.
b) For your element t from part a, find three other elements of \mathbb{Z} which are not related to it.
c) Determine whether \sim is an equivalence relation on \mathbb{Z}. Support your answer well.
5. a) Regarding the function $f: A \rightarrow B$ as a subset of $A \times B$, write the definition of f^{-1}.
b) Let A be a set. Express the identity function $f: A \rightarrow A$ as a subset of $A \times A$.
