1. a) State the definition of a symmetric relation.

b) Give an example of a relation on the set $\{1, 2, 3\}$ which is reflexive but not transitive.

2. a) Suppose that \equiv is the relation on the set $A = \{a, b, c, d, e\}$ defined by $\equiv = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c), (d,d), (d,e), (e,d), (e,e)\}$. Write the equivalence classes corresponding to \equiv out explicitly.

b) Suppose that *P* is the partition $\{\{1\}, \{2, 4\}, \{3, 5\}\}$ of the set $A = \{1, 2, 3, 4, 5\}$. Find the relation *R* corresponding to *P*.

- 3. Let *R* be a relation on a set *A* which is reflexive, symmetric, and transitive; let *S* be some other relation on *A*.
 - a) Will $R \cup S$ be reflexive?

b) Will $R \cap S$ be symmetric?

c) Will $R \cup S$ be transitive?

- 4. Let *R* be the relation on \mathbb{Z} defined by $n \sim m$ iff *n* and *m* have a factor (other than ± 1) in common.
 - a) Pick an element t of \mathbb{Z} and find three other elements of \mathbb{Z} which are related to it.
 - b) For your element t from part a, find three other elements of \mathbb{Z} which are not related to it.
 - c) Determine whether \sim is an equivalence relation on \mathbb{Z} . Support your answer well.

5. a) Regarding the function $f: A \to B$ as a subset of $A \times B$, write the definition of f^{-1} .

b) Let A be a set. Express the identity function $f: A \rightarrow A$ as a subset of $A \times A$.