- A set A is bounded iff $\exists M \in \mathbb{R}$ such that $\forall a \in A, |a| \leq M$.
- 1. Let *A* and *B* be bounded sets. Then $A \cap B$ is bounded.
- 2. Let *A* and *B* be bounded sets. Then $A \cup B$ is bounded.
- 3. Let *A* be a set with *n* elements, where $n \in \mathbb{N}$. Then *A* is bounded.
- 4. Let *I* be an indexing set, and A_i be a bounded set for each $i \in I$. Then $\bigcap_{i \in I} A_i$ is bounded.
- 5. Let *I* be an indexing set, and A_i be a bounded set for each $i \in I$. Then $\bigcup_{i \in I} A_i$ is bounded.
 - A function $f: D \to \mathbb{R}$ is **bounded** iff there $\exists M \in \mathbb{R}$ such that $\forall x \in D, |f(x)| \leq M$.
- 6. Let f be a constant function. Then f is bounded.
- 7. Let f and g be bounded functions. Then f + g is a bounded function.
- 8. Let f and g be bounded functions. Then f g is a bounded function.
- 9. Let f and g be bounded functions. Then $f \cdot g$ is a bounded function.
- 10. Let f and g be bounded functions. Then $f \div g$ is a bounded function.
- 11. Let f and g be bounded functions. Then $f \circ g$ is a bounded function.
- 12. Let $n \in \mathbb{N}$, and f_i be a bounded function for each $i \in \{x \in \mathbb{N} \mid 1 \le x \le n\}$. Then $\sum_{i=1}^{n} f_i$ is a bounded function.
- 13. Let f_i be a bounded function for each $i \in \mathbb{N}$. Then $\sum_{i=1}^{\infty} f_i$ is a bounded function.
- 14. Let f + g be a bounded function. Then f and g are bounded functions.