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4 Relations & Graphs
4.1 Relations

Definition: Let A and B be sets. A reation from A to B isasubset of A x B. When we have a
relatiion from A to A we often cdl it arelation on A. When we have arelation Ron A x B,
ingead of writing (X, y) € Rwe sometimeswrite X Ry.

Example 1: We definearedation N on R asfollows N ={(X, y) | x =—y}. Thenfor instance (-3,3) €
N, which could also be written =3 N 3. This relaion isamore forma version of what might be
expressed as “isthe negative of” asin, “-3 isthe negative of 3."

Example 2. We defineardation ~on Z asfollows ~={(n,m) € Zx Z | 3k € Z, n—m=2k}. Then

for ingtance 3 ~ 5 and 6 ~ 20, but it is not the case that 3 ~ 4; which might naturally be denoted 3 + 4.
Y ou should recognize that m ~ n when either both values are even or both values are odd.

Exercises

For each of the relations specified below:

a) Pick an dement t of the set in question and find three other e ements of the set which are rdated to it.
b) For your dlement t from part a, find three other eements of the set which are not related to it.

1. Let ~ betherdationon N defined by x ~ y iff x —y isthrodd.

2. Let = betherdaionon R definedby x = yiff x —y € Z.

3. Let ~ betherdationon R definedby x ~ yiff x —y € Q.

4. Let = betherdationon Z defined by x = yiff x —y| = 5.

5. Let< bethereation onthe set #(R) of dl polynomidswith red coefficentsdefined by f < g iff f
and g have aroot in common.

6. Let = betherdation on the set R(l) of integrable functionsfrom [0,1] to R defined by f = g iff
1 1
Q f(x)dx= (‘gg(x) dx.

7. Let - bethereation ontheset R defined by x > yiff x >y + 5.

8. Let > betherdation ontheset R defined by x > yiff x > 3y.

9. Let c betheusua subset relation on P(N), the power set of the natural numbers.

10. Let >« betherdation on P(N) defined by A >« Biff An B # 2.
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4.2 Properties of Relations

Simply put, some relations are more interesting than others. This section explores properties that are
often shared by some of the more interesting (and useful) relations used in mathematics.

Definition: A relation ~onaset Sisreflexiveiff vae S a~ a.

Definition: A relation ~onaset Sissymmetriciff va,be Sa~b=b~a.

Definition: A relation ~on aset Sistrangtiveiff va,b,ce Sa~b/Ab~c=a~c.
Exercises

1. Determine whether each of the relations from Exercises 1- 10 in 84.1 is reflexive, symmetric, or
trangtive.

2. Congder thereation B on the set of dl people defined by a B biff aisabrother of b. Isthis
relation reflexive, symmetric, or trangtive?

3. Condgder therdation Son the sat of dl people defined by a Shiff aisashbling of b. Isthisreation
reflexive, symmetric, or trangtive?

For 13-20, let S={a, b, c}. Givean example, if possble, of ardation on Swhichis
4. Reflexive, symmetric, trangtive.

5. Reflexive, symmetric, not trangtive,

6. Reflexive not symmetric, trangtive.

7. Reflexive, not symmetric, not trandtive.

8. Not reflexive, symmetric, trangtive,

9. Not reflexive, symmetric, not trangtive.

10. Not reflexive, not symmetric, trandtive.

11. Not reflexive, not symmetric, not trangtive.

12. If two rdaionsRand Son A isreflexive, isRu Sreflexive? Rn S?

13. If two rdaions Rand Son A is symmetric, iISRu Ssymmetric? Rn S?

14. If two rdations Rand Son A istrandtive, isRu Strandtive? Rn S?
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4.3 Equivalence Relations

Asnoted in the last section, some relations are more useful than others. Particularly useful are ones
with some common characteristics that in turn lead to other properties, as devel oped below.

Definition: A rdation which isreflexive, symmetric, and trandtive is caled an equivalence relation.

Example 1: Congruence of triangles, which should be familiar to you from high school geometry, isan
equivaence rdation.

Example 2: We defined congruence modulo n in section 1.3; note that Exercises 14-16 in that section
amount to a proof that this gives an equivalence relation on Z.

Example 3: Exercises 1-3 in section 3.6 prove that equipollence provides an equivalence reation on the
set of al subsets of any universa set.

Definition: Givenasgt S, andement a € S, and an equivadence rdaion ~ on S, the st of dements
of Sthat arerelated to a is cdled the equivalence class of a and denoted [a], i.e.[a] = {x €
S|x~a}.

Example 4: If we congder, asin Example 2 above, the equivaence relation of congruence modulo 2,

then the equivalenceclassof 1includes3snce3-1=2,and2=2-1wherelec Z. Infact, [1] is
exactly the odd integers.

Example 5: For the equivaence relation of equipollence on some collection of sets mentioned in
Example 3 above, the equivaence class of aset with, say, 2 dementswill be dl of the other sets having
exactly 2 dements. If the collection of setsincluded R and al of its subsets, then the equivalence class
of R itself would include the set of irrationds (among many others), and the equivalence class of N
would indude Z, and Q@ (among many others).

Definition: A st C of setsispairwisedigoint iff VS, S, C,SnS=o or § =S,
Definition: A partition of aset Sisaset of parwise digoint subsets of Swhoseunionisdl of S

Theorem 1. Let Sbe aset and P apartition of S. The rdaion on Sdefined by a~ biff 3P € P for
which a, b € P isan equivaence rdation.

Proof: Exercises 10-12.

Theorem 2: Let Sbeaset and ~ bean equivalencerdationon S Thest {[a] |a € S isapartition of
S

Proof: Exercise 13.
Exer cises

1. Condder therelation ||| on Z defined by a ||| b iff a — b isthreven. Determine whether ||| isan
equivaence rdation.
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. Condder therdation ~ on Z defined by a ~ b iff ja| = |b|. Determine whether ~ isan equivaence
relation.

. Consider therdation = on R x R defined by (X;, V1) = (X5, Vy) iff X2 + y,2 = X,2 + y,2. Determine
whether = isan equivalence reation.

. Condder therdation - on R x R defined by (X1, Y1) ~ (X5, Vo) iff X1 > X, V (X1 = X, A Yy = Vs).
Determine whether - isan equivalence relation.

. For any of therdationsin Exercises 1-4 which are equivaence rdations, describe the equivaence
classes.

. A collection C of sets S indexed by some set | is pairwise digoint iff ﬂ S=£
il |

. LaeS={1,23,4}. Then P={(1,1), (1,2), (21), (2,2), (3,3), (4,4)} isapartition of S. Writethe
equivaence classes of Sassociated with P.

. Let S={1, 2, 3,4}. Supposethat ~isan equivdencerdationwithl~2~3,butl + 4. Whatis
the partition associated with ~?

. Let S={1, 2, 3,4}. Supposethat ~isan equivdence rdationwith 1 ~4. What are the possble
partitions associated with ~?

10. Show that the rdation defined in Theorem 1 isreflexive.

11. Show that the relation defined in Theorem 1 is symmetric.

12. Show that the rdation defined in Theorem 1 istrangtive.

13. Prove Theorem 2.
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4.4 Functions as Relations

Chapter 3 was devoted to functions (and their implications via equipollence), but only gave alimited
verson of what functions actudly are. This section gives the mature version.

Ddfinition: A rdation Rfrom A to Bisafunction from A to B iff for dl a € A there exigsaunique
b € Bfor which (a, b) e R Due to this uniqueness we often write R(a) = bwhen (a, b) e R

While technicdly it'simproper to give anew definition of aterm that was previoudy defined (in section
3.1), infact our previous definition was vague on exactly the point this new verson alows us to make
precise. Before there was referenceto a*“rule’ without any specification of what might be dlowable as
arule (canyou rall dice, for ingance?). This new verson specifies, and in terms of materid (set theory)
that we have previoudy devel oped.

Example 1. Consider f ={(X, y) € R x R | x? =y} asafunctionfrom R to R. Thisisthe standard
parabolafamiliar to al Cac 1 students, but presented in amore formal manner.

Example 2: Condder iy ={(a, @) | a € A} asafunctionfrom A to A. Thisistheidentity functionon A
defined in section 3.1, now presented in a more sophigticated way.

Exer cises

1. Expressthe congant function f(x) = cfrom R to R formally as a set of ordered pairs.
2. Expresstheincluson function from A to B formdly as a set of ordered pairs.

3. Expressthe definition of an even function in terms of ordered pairs.

4. Expressthe definition of an odd function in terms of ordered pairs.

5. Expressthe definition of an increasing function in terms of ordered pairs.

6. Expressthe definition of adecreasing function in terms of ordered pairs.

7. Expressthe definition of abounded function in terms of ordered pairs.

8. Expressthe definition of the sum of two functionsin terms of ordered pairs.

9. Expressthe definition of the product of two functionsin terms of ordered pairs.

10. Express the definition of the composition of two functionsin terms of ordered pairs.

11. Expressthe definition of a surjective function in terms of ordered pairs.

12. Express the definition of an injective function in terms of ordered pairs.
13. Express the definition of an inverse function in terms of ordered pairs.
14. Suppose that f and g are functionsfrom Ato B. Isf u g afunctionfrom Ato B? f n g?
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4.5 Graph Theory

Firgt, adisclamer: the graphsin the section are not the graphs of Calculus or high school dgebra, but
ingtead the graphs involved in the area of mathematics and computer science called graph theory.
Although we will not explore this areain much depth, it fits naturaly with the rest of the materid in this
chapter and is S0 widdy seen in gpplications of mathematics to interesting Stuations that any serious
math student should be acquainted with it.

Definition: A graph G isaset V of vertices dong with aset E of edges, where each edge is a set
containing exactly two vertices.

Y ou should note that thisis dmost identica to the definition of ardation on aset V — see Exercise 3.

Definition: The degr ee of avertex v in agraph, sometimes denoted d(v), is the number of edges
contaning v.

Definition: A walk isasequencevy, €, Vy, €, Vs, ... , €, V,, dternating vertices and edges, arting
and ending with vertices, and where each edge is adjacent to the preceding and succeeding vertices. A
pathisawak in which dl the vertices are digtinct. A cycle isawak inwhich vo=v,andn > 3.
Definition: A graph G is said to be connected iff every pair of pointsisjoined by awalk.

Definition: A tree is a connected graph with no cycles.

Exercises

1. How many different graphs are there with three vertices?

2. How many different graphs are there with four vertices?

3. Describe the connection between arelation Ron aset V and agraph G with the set V of vertices.

4. Create arelation based on agraph G by saying dementsv,, v, € V arerdated iff there existsa
wak from v, to v,. Istheresulting rdation reflexive? Symmetric? Trandtive?

5. The maximum possible number of edgesin agrgph with n verticesis

6. Thenumber of edgesin atreewith n verticesis

7. The minimum number of edgesin a connected graph with n verticesis

8. The sum of the degrees of the pointsin agraph is twice the number of edgesin the graph.
9. Inany graph, the number of points of odd degreeis even.

10. A graph with dl vertices of degree 3 iscubic. Every cubic graph has an even number of vertices.

50



