Exam 3b Calc 2 4/1/2011

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. a) Write the first three terms in the sequence $\left\{\frac{n}{2 n+1}\right\}$.
b) Write the first three partial sums of the series $\sum_{n=1}^{\infty} \frac{n}{2 n+1}$.
2. Find the sum of the series $\frac{3}{4}-\frac{1}{2}+\frac{1}{3}-\frac{2}{9}+\frac{4}{27}-\ldots$.
3. Set up an integral for the area inside one loop of the curve $r=\sin 2 \theta$.

4. Find a general solution to the differential equation $\frac{d y}{d x}=\frac{-x}{y}$.
5. Find an equation for the ellipse with vertices at $(0,0),(6,0),(3,2)$, and $(3,-2)$.
6. A cup of coffee starts at $160^{\circ} \mathrm{F}$ and cools according to the differential equation $\frac{d T}{d t}=0.05(70-T)$. Using $\Delta t=5$ minutes, approximate the temperature of the coffee after 10 minutes.
7. Biff is a Calculus student at Enormous State University, and he's having some trouble. Biff says "Crap. This Euler's stuff is killing me. Look at this problem from our exam!"

> A paper cup of coffee sitting under a ceiling fan starts at $170^{\circ} \mathrm{F}$ and cools according to the differential equation $\frac{d T}{d t}=0.2(70-T)$. Using $\Delta t=10$ minutes, approximate the temperature of the coffee after 30 minutes. Comment on the accuracy of your answer.
"So I worked it out, and said the answer had to be pretty good because I didn't have to round it off or anything. But when they gave the text back I got zero points for that part even though I did the number part right. Isn't math supposed to be about getting the right answer?"

Explain clearly to Biff what might have been a good comment on the accuracy of his answer.
8. Find the slope of the polar curve $r=\sin 2 \theta$ (picture provided on \#3).
9. Set up an integral for the area of the region enclosed by the curve with parametric equations

10. Set up an integral for the length of the portion of the curve with parametric equations

$$
x(t)=t+\cos 2 t \quad y(t)=t-\sin 4 t
$$

which extends from the point $(1,0)$ to the point $(2 \pi+1,2 \pi)$.

Extra Credit (5 points possible):

Evaluate the integral you set up in \#10 [Hint: The identity $\sin 2 x=2 \sin x \cos x$ may be useful].

