Exam 1 Calc 2 2/3/2012

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Set up an integral for the area of the region bounded between $y=x$ and $y=x^{2}$.
2. Let $F(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$. What is $F^{\prime}(x)$?
3. Set up an integral for the volume of the solid generated when the region bounded between $y=$ x and $y=\sqrt{x}$ is revolved around the x-axis.
4. If a spring has a natural length of 30 cm , and 50 N of force is required to hold it stretched to 32 cm , how much work would be required to stretch it from 30 cm to 32 cm ?
5. A really boring swimming pool is shaped like a box with a base measuring 25 m by 12 m by 2.5 m deep. Set up an integral for the amount of work required to pump all of the water out of the pool when it starts out full.
6. Let R be the region bounded between $y=x(4-x)$ and $y=x$. Set up an integral for the volume of the solid created by rotating R around the y-axis.
7. Because of a stunningly negligent editor named Brian, the first printing of the second edition of CliffsQuickReview Calculus was released with a table of integrals that said

$$
\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{2} \arctan \frac{x}{2}+C
$$

Explain, in simple enough terms that Brian can follow along (Brian claimed to have taken calculus himself), exactly how this formula is or is not acceptable and why.
8. Find the exact length of the arc of $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}$ on the interval $[1,3]$.
9. Derive the integration formula $\int \frac{x}{a x+b} d x=\frac{x}{a}-\frac{b}{a^{2}} \ln |a x+b|+C$.
10. A water storage tank shaped like a sphere with radius 3 m is buried so that the top of the sphere is 7 m below ground level. Write an integral for the amount of work required to pump all of the water in this tank up to ground level.

Extra Credit (5 points possible):
Set up an integral for the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and evaluate it [Hint: Use geometry].

