Exam 2a Calc 2 3/2/2012

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. For $\int_{0}^{1} \sin (\sqrt{x}) d x$, the left-hand approximation using $n=2$ subintervals is 0.3248 (to four decimal places). Find the midpoint and trapeziodal approximations with $n=2$ subintervals.
2. Evaluate $\int \sin ^{5} \theta d \theta$.
3. Set up an integral for the surface area obtained by rotating the curve $y=1 / x$ on $[1,10]$ around the x-axis.
4. Find the present value of an income stream of $\$ 2000$ per year, for a period of 10 years, if the continuous interest rate is 5%.
5. Evaluate $\int_{8}^{\infty} \frac{d x}{\sqrt[3]{x}}$.
6. Bunny is a Calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod, this is sooooo hard. I understand when they ask you to, like, work out a probability or something, right? But there was this problem on our test about why this one function wasn't a probability dense function, and that's totally unfair. How am I supposed to know it isn't one? The function was, like, $p(x)=\left\{\begin{array}{cc}0.2 & \text { for } 0 \leq x \leq 6 \\ 0 & \text { for } x<0 \text { or } x>6\end{array}\right.$."

Explain clearly to Bunny how one can tell whether a function like this is (or is not) a p.d.f..
7. Suppose the function $p(x)=\left\{\begin{array}{cc}0 & \text { for } x<0 \\ 0.4 e^{-0.4 x} & \text { for } x \geq 0\end{array}\right.$ is a probability distribution function for the probability that a shirt lasts x years before getting torn. Find the median number of years a shirt lasts.
8. Show that $\int \sqrt{a^{2}+x^{2}} d x$ can be transformed into $a^{2} \int \sec ^{3} \theta d \theta$ by an appropriate substitution.
9. Derive the reduction formula $\int \sec ^{n} x d x=\frac{\sec ^{n-2} x \tan x}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x$ (provided $n \neq 1$).
10. Evaluate $\int \frac{1}{x\left(x^{2}+1\right)} d x$.

Extra Credit (5 points possible):
Evaluate $\int_{0}^{\pi} \sin ^{m} x d x$ in terms of m.

