CALCULUS 2 MTWF 10:00-10:50AM Spring 2012 STUART 309

Instructor: Jonathan White
E-Mail: JWhite@Coe.Edu
Web Page: public.coe.edu/~jwhite
Office: Stuart 316
Office Hours: MTWF 9:00-9:50am and by appointment
Office Phone: 399-8280
Home Phone: $\quad 362-3350$ (between 7am and 10pm)
Text: Calculus, Early Transcendentals, $I^{s t}$ Edition, Briggs \& Cochran
Problem Sets, There will be several problem sets and quizzes during the semester, as well as online WeBWorK Quizzes, WW: assignments. Combined these will be worth 150 points.

Math Culture Each student has the option of including Math Culture Points in their grade. A slate of Math Culture Points:

Exams: There will be three in-class exams administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These exams will be worth 100 points each. The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth 200 points.

Grading: Grading will approximately follow a $90 \% \mathrm{~A}, 80 \% \mathrm{~B}, 70 \% \mathrm{C}, 60 \% \mathrm{D}$ scale. Current grade information will be available through Moodle at all times.

Makeups: For the sake of fairness to those who follow the schedule, makeups for exams will be allowed only under extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted due to extenuating circumstances will generally be subject to a penalty of 20% of the possible points for each day past due. Late WeBWorK will not be accepted.

The "Big Idea" of Calculus is using mathematics to deal with change. Calculus 1 deals primarily with rates of change, and Calculus 2 addresses accumulations - the totals toward which changing quantities tend. These ideas cut across all quantitative disciplines - whether it's a falling stone, a falling stock, a declining population, or an endothermic reaction, there are mathematical commonalities, and those are what Calculus deals with.

Calculus 2 is a continuation of topics introduced in Calculus 1, but with a greater depth and sophistication. The problems get bigger, and the ideas get bigger as well. Some truly interesting questions become answerable, and more aspects of the world come within reach, but the techniques involved become substantially more difficult.

To enter this class, each student must pass (score of 80% or more) a computer-administered derivatives "gateway" exam. You may attempt this exam as often as desired, provided that you demonstrate understanding of previous mistakes before a retake. Success by 5 pm Friday, January $20^{\text {th }}$ will count as 10 points toward a student's WeBWorK score, but after 5 pm Friday, January $28^{\text {th }}$ course grades will be lowered by 10% for each week or portion of a week without passing this exam.

The use of technology, particularly the software package Mathematica, will be an important component of the course. Ability to compute with pencil and paper will also be important, as will conceptual understanding of the topics treated. This combination of approaches and topics is likely to be challenging, partly because few will find that all of these aspects play to their strengths. Don't let that be overwhelming, though - remember that I'm around to help.

Calculus 2 MTWF 10:00-10:50am Spring 2012 Stuart 309

Tentative Schedule

		Wednesday, January $11^{\text {th }}$ §4.8 Antiderivatives	Friday, January $13^{\text {th }}$ §5.3 The Fun. Theorem
Monday, January $16^{\text {th }}$ No Class - MLK Day	Tuesday, January $17^{\text {th }}$ §5.5 Substitution	Wednesday, January $18^{\text {th }}$ §6.1 Velocity \& Net Change	Friday, January $20^{\text {th }}$ §6.2 Areas between Curves
Monday, January $23^{\text {rd }}$ §6.3 Volume by Slicing	Tuesday, January $24^{\text {th }}$ §6.4 Volume by Shells	Wednesday, January $25^{\text {th }}$ $\S 6.5$ Length of Curves	Friday, January $27^{\text {th }}$ §6.6 Physical Applications
Monday, January $30^{\text {th }}$ §6.6 Physical Applications	Tuesday, January $31^{\text {st }}$ §6.7 Log \& Exp Functions	Wednesday, February $1^{\text {st }}$ Review	Friday, February $3^{\text {rd }}$ Exam 1
Monday, February $6^{\text {th }}$ §7.1 Integration by Parts	Tuesday, February $7^{\text {th }}$ §7.1 Integration by Parts	Wednesday, February $8^{\text {th }}$ §7.2 Trig Integrals	Friday, February $10^{\text {th }}$ §7.3 Trig Substitution
Monday, February $13^{\text {th }}$ §7.4 Partial Fractions	Tuesday, February $14^{\text {th }}$ §7.5 Integration Strategy	Wednesday, February $15^{\text {th }}$ §7.5 Integration Strategy	Friday, February $17^{\text {th }}$ §7.6 Numerical Integration
Monday, February $20^{\text {th }}$ §7.7 Improper Integrals	Tuesday, February $2{ }^{1{ }^{\text {st }}}$ §7.7 Improper Integrals	Wednesday, February $22^{\text {nd }}$ Surface Area	Friday, February $24^{\text {th }}$ Applications to Economics
Monday, February $27^{\text {th }}$ Applications to Probability	Tuesday, February 2 8 $^{\text {th }}$ Applications to Probability	Wednesday, February $29^{\text {th }}$ Review	Friday, March $2^{\text {nd }}$ Exam 2
Spring Break			
Monday, March $12^{\text {th }}$ §8.1 Overview	Tuesday, March $13^{\text {th }}$ §8.2 Sequences	Wednesday, March $14^{\text {th }}$ §8.3 Infinite Series	Friday, March $16^{\text {th }}$ §8.4 Integral Test
Monday, March $19^{\text {th }}$ §8.5 Comparison Tests	Tuesday, March $20^{\text {th }}$ §8.5 Ratio Test	Wednesday, March $21^{\text {st }}$ §8.6 Alternating Series	Friday, March $23^{\text {rd }}$ §8.6 Alternating Series
Monday, March $26^{\text {th }}$ §9.1 Polynomial Approx.	Tuesday, March $27^{\text {th }}$ §9.2 Properties of Power Series	Wednesday, March $28^{\text {th }}$ §9.2 Properties of Power Series	Friday, March $30^{\text {th }}$ §9.3 Taylor Series
Monday, April $2^{\text {nd }}$ §9.3 Taylor Series	Tuesday, April $3^{\text {rd }}$ §9.4 Using Taylor Series	Wednesday, April $4^{\text {th }}$ Review	Friday, April $6^{\text {th }}$ Exam 3
Monday, April $9^{\text {th }}$ §10.1 Parametric Equations	Tuesday, April $10^{\text {th }}$ §10.1 Parametric Equations	Wednesday, April $11^{\text {th }}$ Student Research Symposium	Friday, April $13^{\text {th }}$ §10.2 Polar Coordinates
Monday, April $16^{\text {th }}$ §10.3 Calculus in Polar	Tuesday, April 17 ${ }^{\text {th }}$ §10.4 Conic Sections	Wednesday, April $18^{\text {th }}$ §10.4 Conic Sections	Friday, April $20^{\text {th }}$ §7.8 Differential Equations
Monday, April $23^{\text {rd }}$ §7.8 Differential Equations	Tuesday, April $24^{\text {th }}$ §7.8 Differential Equations	Wednesday, April $25^{\text {th }}$ Review	
Final Exam - 8am on Saturday, April $28^{\text {th }}$			

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.
Diversity, in all its forms, is valuable.

Calculus 2 MTWF 10:00-10:50am Spring 2012 Stuart 309

Math Culture Points

A significant portion of the grade for this course may take the form of Math Culture Points. These will be earned through activities outside of class including, but not necessarily limited to, those listed below:

Activity	Points	Max \#
Colloquium Attendance	5	-
Colloquium Presentation	$5-15$	2
Meeting Attendance Nebraska Conference for Undergraduate Women in Mathematics (Jan. 27-29) Iowa Council of Teachers of Mathematics (February 17) SIGCSE Technical Symposium (Feb 29- March 3) Midwest Undergraduate Mathematics Symposium (April 13-14)	15	2
Mathematics Competition Participation Mathematical Contest in Modeling (Feb. 9 - 13) Iowa Collegiate Mathematics Competition (February 25)	10	
Math Culture Reading Some weeks specific readings will be posted on the course web page Articles from Math Horizons With approval, columns on maa.org, articles from Math. Magazine, The College Math. Journal	$10-15$	
Math Club Activities (when appropriate) Winter Break Book, Movies, Pi Day celebration, Speakers, etc.	10	2
Volunteer Math Outreach		
Working with students at Polk Elementary, etc.	$5-10$	5
Other Appropriate Coe Activities		
Contemporary Issues Forum Attending a Quantitative Research Symposium Presentation Psychology Experiment Participation	5	-

Generally Math Culture Points can be earned for at most two activities in any given week, so you should plan to spread your participation throughout the semester. In each case above, credit assumes both full participation and posting a brief summary/response on Moodle. These reflections should generally be between 100 and 300 words, and include both a brief summary and your personal thoughts on the event, and must be submitted within one week of the event.

