Problem Set 7 Foundations Due 3/19/2012

Four of these problems will be graded, with each problem worth 5 points. Clear and complete justification is required for full credit. You are welcome to discuss these problems with anyone and everyone, but must write up your own final submission without reference to any sources other than the textbook and instructor. Submissions must be on clean paper with no ragged edges.

1. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective functions, then $g \circ f$ is injective.
2. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjective functions, then $g \circ f$ is surjective.
3. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, and $g \circ f$ is injective, then g is injective.
4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, and $g \circ f$ is surjective, then g is surjective.
5. If $f: A \rightarrow B$ has an inverse function g, then g has f as an inverse function also.
6. Let $f: A \rightarrow B$ be a bijective function. Then there exists an inverse function g for f.
7. Let $f: A \rightarrow B$ be a bijective function. Then the inverse function of f is unique, i.e. if g_{1} and g_{2} are both inverse functions for f, then $g_{1}=g_{2}$.
8. Let $f: A \rightarrow B$ be an invertible function. Then f is bijective.
