Examlet 2a Foundations of Advanced Math 3/1/13

1. For any sets A, B, and $C, A \cup(B \cap C) \subseteq A \cup B$.
2. Suppose that $a, b, c \in \mathbb{R}$. If $c<0$ and $a<b$, then $a \cdot c>b \cdot c$.
3. Let $\mathbb{R}^{+}=\{x \mid x \in \mathbb{R}$ and $x>0\}$. For each $x \in \mathbb{R}^{+}$, let $A_{x}=[0, x)$.
a) What is $\bigcap_{x \in\{1,2,3\}} A_{x}$?
b) What is $\bigcup_{x \in\{1,2,3\}} A_{x}$?
c) What is $\bigcap_{x \in \mathbb{R}^{+}} A_{x}$?
d) What is $\bigcup_{x \in \mathbb{R}^{+}} A_{x}$?
4. Suppose I is a set and for each $i \in I, A_{i}$ and B_{i} are sets, and that there is some $i \in I$ for which $A_{i} \subseteq B_{i}$.
a) Is it true that $\bigcup_{i \in I} A_{i} \subseteq \bigcup_{i \in I} B_{i}$? Support your answer.
b) Is it true that $\bigcap_{i \in I} A_{i} \subseteq \bigcap_{i \in I} B_{i}$? Support your answer.
5. $\forall x \in \mathbb{R},-|x| \leq x \leq|x|$.
