1. a) State the definition of a reflexive relation.

b) Give an example of a relation on the set $\{a, b, c\}$ which is transitive but not symmetric.

2. Let $S = \{1, 2, 3, 4, 5\}$, and consider the partition $\mathcal{P} = \{\{1, 2\}, \{3, 5\}, \{4\}\}\$ of *S*. Write the equivalence relation ~ corresponding to \mathcal{P} .

3. a) Express the definition of the sum of two functions $f, g : \mathbb{R} \to \mathbb{R}$ formally in terms of ordered pairs.

b) Express the definition of a surjection formally in terms of ordered pairs.

- 4. Let *S* be a set and \mathcal{P} a partition of *S*.
 - a) The relation on *S* defined by $a \sim b$ iff $\exists P \in \mathcal{P}$ for which $a, b \in P$ is a reflexive relation.

b) The relation on *S* defined by $a \sim b$ iff $\exists P \in \mathcal{P}$ for which $a, b \in P$ is a symmetric relation.

c) The relation on *S* defined by $a \sim b$ iff $\exists P \in \mathcal{P}$ for which $a, b \in P$ is a transitive relation.

- 5. Say that two vertices v_1 and v_2 of a graph *G* are **adjacent** iff there exists a walk with exactly one edge between them.
 - a) Is the relation of being adjacent reflexive?

b) Is the relation of being adjacent symmetric?

c) Is the relation of being adjacent transitive?