Examlet 2 Advanced Geometry 3/13/13

1. a) State the definition of an exterior angle of a triangle.
b) State the definition of $\sigma(\triangle A B C)$.
c) State the definition of a convex quadrilateral.
2. a) State the Exterior Angle Theorem.
b) State the Converse to the Isosceles Triangle Theorem.
c) State the Scalene Inequality.
d) State the Saccheri-Legendre Theorem.
e) State Hilbert's Parallel Postulate.
3. State five conditions that are equivalent to the Euclidean Parallel Postulate.
4. Prove that if ℓ and ℓ^{\prime} are two lines cut by a transversal t in such a way that a pair of alternate interior angles is congruent, then ℓ is parallel to ℓ^{\prime}.
5. Provide good justifications in the blanks below for the corresponding statements:

Angle-Side-Angle Theorem: If two angles and the included side of one triangle are congruent to the corresponding parts of a second triangle, then the two triangles are congruent.

Restatement: If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two triangles such that $\angle \mathrm{CAB} \cong \angle \mathrm{FDE}, \overline{A B} \cong \overline{D E}$, and $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$, then $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Statement:	Reason:
Let $\triangle \mathrm{ABC}$ and $\Delta \mathrm{DEF}$ be two triangles such that $\angle \mathrm{CAB} \cong \angle \mathrm{FDE}, \overline{A B} \cong \overrightarrow{D E}$, and $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$	
There exists a point C^{\prime} on $\overrightarrow{A C}$ such that $A C^{\prime} \cong \overrightarrow{D F}$	
Now $\Delta \mathrm{ABC}^{\prime} \cong \Delta \mathrm{DEF}$	
and so $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$.	by hypothesis
Since $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$	
we can conclude $\angle \mathrm{ABC} \cong \angle \mathrm{ABC}{ }^{\prime}$.	Transitive Property
Hence $\overrightarrow{B C} \cong \overrightarrow{B C^{\prime}}$	
But $\overrightarrow{B C}$ can only intersect $\overleftrightarrow{A C}$ in at most one point	Theorem 3.1.7
so $C=C^{\prime}$ and the proof is complete.	Because it's complete.

