1. a) State the definition of an *exterior angle* of a triangle.

b) State the definition of $\sigma(\Delta ABC)$.

c) State the definition of a *convex* quadrilateral.

2. a) State the Exterior Angle Theorem.

b) State the Converse to the Isosceles Triangle Theorem.

c) State the Scalene Inequality.

d) State the Saccheri-Legendre Theorem.

e) State Hilbert's Parallel Postulate.

3. State five conditions that are equivalent to the Euclidean Parallel Postulate.

4. Prove that if l and l' are two lines cut by a transversal *t* in such a way that a pair of alternate interior angles is congruent, then l is parallel to l'.

5. Provide good justifications in the blanks below for the corresponding statements:

Angle-Side-Angle Theorem: If two angles and the included side of one triangle are congruent to the corresponding parts of a second triangle, then the two triangles are congruent.

Restatement: If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\angle CAB \cong \angle FDE$, $\overline{AB} \cong \overline{DE}$, and $\angle ABC \cong \angle DEF$, then $\triangle ABC \cong \triangle DEF$.

Statement:	Reason:
Let $\triangle ABC$ and $\triangle DEF$ be two triangles such that $\angle CAB \cong \angle FDE$, $\overline{AB} \cong \overline{DE}$, and $\angle ABC \cong \angle DEF$	
There exists a point C' on \overrightarrow{AC} such that $\overrightarrow{AC'} \cong \overrightarrow{DF}$	
Now $\triangle ABC' \cong \triangle DEF$	
and so $\angle ABC' \cong \angle DEF$.	
Since $\angle ABC \cong \angle DEF$	by hypothesis
we can conclude $\angle ABC \cong \angle ABC'$.	Transitive Property
Hence $\overrightarrow{BC} \cong \overrightarrow{BC'}$	
But \overrightarrow{BC} can only intersect \overrightarrow{AC} in at most one point	Theorem 3.1.7
so $C = C'$ and the proof is complete.	Because it's complete.