Exam 3 Calc 2 4/4/2014

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Write the $3^{\text {rd }}$ degree Maclaurin polynomial for e^{x}.
2. Determine whether $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges or diverges.
3. Determine whether $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges or diverges.
4. Determine whether the series $\sum_{k=1}^{\infty} \frac{k^{2}-1}{k^{3}+4}$ converges or diverges.
5. Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges or diverges.
6. Determine the radius of convergence of the power series $\sum\left(\frac{x}{3}\right)^{k}$.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Well, crap. I'm getting okay at finding these Taylor series and stuff, 'cause I found there's a formula in the book. But then there's all these other things they bring in and I'm pretty lost. I might have to kill my roommate, 'cause they say you get all A's for a semester if your roommate dies. But if I can figure stuff out by the exam tomorrow, I guess I won't have to do that. So like one of the things the prof said we needed to know was why the series x to the n sums up to 1 over 1 minus x, and he said it was more an explaining thing about reasons than a bunch of calculating, but I'm not so good with reasons. Maybe I need to think more about the roommate option..."

Help Biff (and his roommate!) by explaining clearly how we can find the sum of $\sum x^{n}$.
8. Use a Taylor series with at least 4 nonzero terms to approximate \sqrt{e}.
9. Use a Taylor series with at least 3 nonzero terms to approximate $\int_{0}^{0.2} \sin \left(x^{2}\right) d x$.
10. Use a Taylor series to evaluate $\lim _{x \rightarrow 0} \frac{x}{e^{x}-e^{-x}}$

Extra Credit (5 points possible):
Find a power series representation for $\ln \left(\frac{1+x}{1-x}\right)$.

