You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers. An additional quality point will be awarded to submissions which are presented in a manner appropriate to good college-level work.

1. Show that the value of the expression $\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{1 / x} \frac{1}{1+t^{2}} d t$ does not depend on $x$.
2. Derive the integration formula $\int \frac{x}{\sqrt{a x+b}} d x=\frac{2}{3 a^{2}}(a x-2 b) \sqrt{a x+b}+C$ [Line 83 on the table in the back of the book].
3. Consider the parabola $y=x^{2}$. Pick a point $\left(a, a^{2}\right)$ on this parabola, and label it $P$. Label the point $\left(-a, a^{2}\right)$ as $Q$. Find the lines tangent to the parabola at $P$ and $Q$, and label their point of intersection $R$. Find the area of the region below segment $P Q$ and above the parabola, and show that this area is equal to two-thirds of the area of triangle $P Q R$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers. An additional quality point will be awarded to submissions which are presented in a manner appropriate to good college-level work.

1. Show that the value of the expression $\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{1 / x} \frac{1}{1+t^{2}} d t$ does not depend on $x$.
2. Derive the integration formula $\int \frac{x}{\sqrt{a x+b}} d x=\frac{2}{3 a^{2}}(a x-2 b) \sqrt{a x+b}+C$ [Line 83 on the table in the back of the book].
3. Consider the parabola $y=x^{2}$. Pick a point $\left(a, a^{2}\right)$ on this parabola, and label it $P$. Label the point $\left(-a, a^{2}\right)$ as $Q$. Find the lines tangent to the parabola at $P$ and $Q$, and label their point of intersection $R$. Find the area of the region below segment $P Q$ and above the parabola, and show that this area is equal to two-thirds of the area of triangle $P Q R$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers. An additional quality point will be awarded to submissions which are presented in a manner appropriate to good college-level work.

1. Show that the value of the expression $\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{1 / x} \frac{1}{1+t^{2}} d t$ does not depend on $x$.
2. Derive the integration formula $\int \frac{x}{\sqrt{a x+b}} d x=\frac{2}{3 a^{2}}(a x-2 b) \sqrt{a x+b}+C$ [Line 83 on the table in the back of the book].
3. Consider the parabola $y=x^{2}$. Pick a point $\left(a, a^{2}\right)$ on this parabola, and label it $P$. Label the point $\left(-a, a^{2}\right)$ as $Q$. Find the lines tangent to the parabola at $P$ and $Q$, and label their point of intersection $R$. Find the area of the region below segment $P Q$ and above the parabola, and show that this area is equal to two-thirds of the area of triangle $P Q R$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers. An additional quality point will be awarded to submissions which are presented in a manner appropriate to good college-level work.

1. Show that the value of the expression $\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{1 / x} \frac{1}{1+t^{2}} d t$ does not depend on $x$.
2. Derive the integration formula $\int \frac{x}{\sqrt{a x+b}} d x=\frac{2}{3 a^{2}}(a x-2 b) \sqrt{a x+b}+C$ [Line 83 on the table in the back of the book].
3. Consider the parabola $y=x^{2}$. Pick a point $\left(a, a^{2}\right)$ on this parabola, and label it $P$. Label the point $\left(-a, a^{2}\right)$ as $Q$. Find the lines tangent to the parabola at $P$ and $Q$, and label their point of intersection $R$. Find the area of the region below segment $P Q$ and above the parabola, and show that this area is equal to two-thirds of the area of triangle $P Q R$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers. An additional quality point will be awarded to submissions which are presented in a manner appropriate to good college-level work.

1. Show that the value of the expression $\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{1 / x} \frac{1}{1+t^{2}} d t$ does not depend on $x$.
2. Derive the integration formula $\int \frac{x}{\sqrt{a x+b}} d x=\frac{2}{3 a^{2}}(a x-2 b) \sqrt{a x+b}+C$ [Line 83 on the table in the back of the book].
3. Consider the parabola $y=x^{2}$. Pick a point $\left(a, a^{2}\right)$ on this parabola, and label it $P$. Label the point $\left(-a, a^{2}\right)$ as $Q$. Find the lines tangent to the parabola at $P$ and $Q$, and label their point of intersection $R$. Find the area of the region below segment $P Q$ and above the parabola, and show that this area is equal to two-thirds of the area of triangle $P Q R$.
