1. a) State the definition of an injection.

b) State the definition of a surjection.

c) State the definition of equipollent sets.

d) State the definition of a denumerable set.

e) State the definition of a countable set.

2. a) Let f and g be bounded functions, both with domain D. Then f + g is a bounded function.

b) Let $m \in \mathbb{N}$, and let f_i be a bounded function from D to \mathbb{R} for each $i \in \{n \in \mathbb{N} \mid n \le m\}$. Then $\sum_{i=0}^{m} f_i$ is a bounded function. 3. If $f: A \to B$ and $g: B \to C$ are injective functions, then $g \circ f$ is injective.

4. In class we used the fact that $f(n) = \frac{n-1}{2}$ is a bijection from the odd naturals to the naturals. Prove that it is.

5. If A is equipollent to B, then B is equipollent to A.