Examlet 2 Advanced Geometry 3/4/15

1. a) State the definition of an *exterior angle* of a triangle.

b) State the definition of a convex quadrilateral.

c) State the Saccheri-Legendre Theorem

d) State Euclid's Postulate V.

e) State the Universal Hyperbolic Theorem

2. How do you know ASS (Angle-Side-Side) is not a valid triangle congruence condition?

3. a) Provide good justifications in the blanks below for the corresponding statements:

Proposition: Let $\triangle ABC$ be a triangle. If AB > BC then $\mu(\angle ACB) > \mu(\angle BAC)$.

Statement:	Reason:
Let A, B, and C be three noncollinear points. Let $AB > BC$.	
Since $AB > BC$, there exists a point D between A and B such that $\overline{BD} \cong \overline{BC}$.	
Now $\mu(\angle ACB) > \mu(\angle DCB)$,	
and $\mu(\angle DCB) \cong \mu(\angle CDB)$.	
But $\angle CDB$ is an exterior angle for $\triangle ADC$, so $\mu(\angle CDB) > (\angle CAB)$.	
The conclusion follows from those inequalities.	The conclusion follows from those inequalities.

b) Let $\triangle ABC$ be a triangle. Show that if $\mu(\angle ACB) > \mu(\angle BAC)$ then AB > BC.

4. Provide good justifications in the blanks below for the corresponding statements:

Proposition: If there exists one line ℓ_0 , an external point P_0 , and at least two lines that pass through P_0 and are parallel to ℓ_0 , then for every line ℓ and for every external point P there exist at least two lines that pass through P and are parallel to ℓ .

Statement:	Reason:
S'pose there exists a line ℓ_0 , an external point P_0 , and at least two lines that pass through P_0 and are parallel to ℓ_0 .	
Then the Euclidean Parallel Postulate fails.	
No rectangle exists.	
Let ℓ be a line and <i>P</i> an external point.	
We must prove that there are at least two lines through <i>P</i> that are both parallel to ℓ . Drop a perpendicular to ℓ through <i>P</i> and call the foot of that perpendicular <i>Q</i> .	
Let <i>m</i> be the line through <i>P</i> that is perpendicular to \overrightarrow{PQ} .	
Choose a point <i>R</i> on ℓ that is different from <i>Q</i> and let <i>t</i> be the line through <i>R</i> that is perpendicular to ℓ .	
Drop a perpendicular from P to t and call the foot of the perpendicular S .	
Now $\Box PQRS$ is a Lambert quadrilateral.	
But $\Box PQRS$ is not a rectangle (reason?), so $\angle QPS$ is not a right angle and $\overrightarrow{PS} \neq m$.	
Nevertheless \overrightarrow{PS} is parallel to ℓ ,	
so our proof is complete.	Because our proof is complete.

- 5. A **rhombus** is a quadrilateral with four congruent sides, and a **square** is a quadrilateral with four congruent sides and four right angles.
 - a) Do rhombi exist in neutral geometry? [Hint: Let \overline{AB} and \overline{CD} be segments that share a common midpoint, with $\overline{AB} \perp \overline{CD}$, and look at $\Box ACBD$.]

b) Do squares exist in neutral geometry?