Examlet 2 Advanced Geometry 3/4/15

1. a) State the definition of an exterior angle of a triangle.
b) State the definition of a convex quadrilateral.
c) State the Saccheri-Legendre Theorem
d) State Euclid's Postulate V.
e) State the Universal Hyperbolic Theorem
2. How do you know ASS (Angle-Side-Side) is not a valid triangle congruence condition?
3. a) Provide good justifications in the blanks below for the corresponding statements:

Proposition: Let $\triangle A B C$ be a triangle. If $A B>B C$ then $\mu(\angle A C B)>\mu(\angle B A C)$.

Statement:	Reason:
Let A, B, and C be three noncollinear points. Let $A B>B C$.	
Since $A B>B C$, there exists a point D between A and B such that $\overline{B D} \cong \overline{B C}$.	
Now $\mu(\angle A C B)>\mu(\angle D C B)$,	
and $\mu(\angle D C B) \cong \mu(\angle C D B)$.	
But $\angle C D B$ is an exterior angle for $\triangle A D C$, so $\mu(\angle C D B)>(\angle C A B)$.	
The conclusion follows from those inequalities.	The conclusion follows from those inequalities.

b) Let $\triangle A B C$ be a triangle. Show that if $\mu(\angle A C B)>\mu(\angle B A C)$ then $A B>B C$.
4. Provide good justifications in the blanks below for the corresponding statements:

Proposition: If there exists one line ℓ_{0}, an external point P_{0}, and at least two lines that pass through P_{0} and are parallel to ℓ_{0}, then for every line ℓ and for every external point P there exist at least two lines that pass through P and are parallel to ℓ.

Statement:	Reason:
S'pose there exists a line ℓ_{0}, an external point P_{0}, and at least two lines that pass through P_{0} and are parallel to ℓ_{0}.	
Then the Euclidean Parallel Postulate fails.	
No rectangle exists.	
Let ℓ be a line and P an external point.	
We must prove that there are at least two lines through P that are both parallel to ℓ. Drop a perpendicular to ℓ through P and call the foot of that perpendicular Q.	
Let m be the line through P that is perpendicular to $P Q$.	
Choose a point R on ℓ that is different from Q and let t be the line through R that is perpendicular to ℓ.	
Drop a perpendicular from P to t and call the foot of the perpendicular S.	
Now $\square P Q R S$ is a Lambert quadrilateral.	
But $\square P Q R S$ is not a rectangle (reason?), so $\angle Q P S$ is not a right angle and $\overleftrightarrow{P S} \neq m$	
Nevertheless $\overparen{P S}$ is parallel to ℓ,	Because our proof is complete.
so our proof is complete.	

5. A rhombus is a quadrilateral with four congruent sides, and a square is a quadrilateral with four congruent sides and four right angles.
a) Do rhombi exist in neutral geometry? [Hint: Let $\overline{A B}$ and $\overline{C D}$ be segments that share a common midpoint, with $\overline{A B} \perp \overline{C D}$, and look at $\square A C B D$.]
b) Do squares exist in neutral geometry?
