Examlet 3 Advanced Geometry 4/10/15

1. a) State the Fundamental Theorem on Similar Triangles.
b) State the definition of $\cos \theta$ for an acute angle θ.
c) Let $\triangle A B C$ be a triangle. State the definition of the associated triangular region.
2. a) State the Neutral Area Postulate.
b) State the Euclidean Area Postulate.
3. State and prove the Law of Sines.
4. a) State a theorem (of your choice) from $\S 6.2$ about common perpendiculars.
b) Provide good justifications in the blanks below for the corresponding statements:

Proposition: In hyperbolic geometry, if $\triangle A B C \sim \triangle D E F$, then $\triangle A B C \cong \triangle D E F$.

Statement:	Reason:
Let $\triangle A B C$ and $\triangle D E F$ be two triangles such that $\triangle A B C \sim \triangle D E F$.	
If any one side of $\triangle A B C$ is congruent to the corresponding side of $\triangle D E F$, then $\triangle A B C \cong$ $\Delta D E F$.	
Now s'pose $A B \neq D E, B C \neq E F$, and $A C \neq$ $D F$.	
Without loss of generality, assume $A B>D E$ and $A C>D F$.	
Choose a point B^{\prime} on $\overline{A B}$ such that $A B^{\prime}=$	
$D E$ and choose a point C^{\prime} on $A C$ such that	
$A C^{\prime}=D F$. Then $\square B C C^{\prime} B^{\prime}$ is convex.	
Then $\triangle A B^{\prime} C^{\prime} \cong \triangle D E F$.	
So $\angle A B^{\prime} C^{\prime} \cong \angle A B C$ and $\angle A C^{\prime} B^{\prime} \cong \angle A C B$.	
$\angle B B^{\prime} C^{\prime}$ is the supplement of $\angle A B^{\prime} C^{\prime}$ and	
$\angle C C^{\prime} B^{\prime}$ is the supplement of $\angle A C^{\prime} B^{\prime}$.	
$\sigma\left(\square B C C^{\prime} B^{\prime}\right)=360^{\circ}$	
But this is a contradiction, so $\triangle A B C \cong \triangle D E F$	

5. Show that if $\triangle A B C$ is a triangle labeled in the standard way, and $a^{2}+b^{2}=c^{2}$, then $\angle B C A$ is a right angle.
