Exam 2 Calc 2 2/19/2016

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Evaluate $\int x \cos x d x$.
2. Give the form for a partial fractions decomposition of $\int \frac{x^{2}-4}{(x-5)^{3}\left(x^{2}+1\right)} d x$, or explain why one does not exist.
3. What trigonometric substitution is a good idea for evaluating $\int \frac{1}{\sqrt{x^{2}+9}} d x$? [No, you don't need to work it out - just name the good substitution.]
4. Evaluate $\int \tan ^{6} \theta \sec ^{2} \theta d \theta$.
5. Evaluate $\int_{8}^{-8} \frac{1}{|x|^{2 / 3}} d x$
6. Derive the reduction formula $\int \sin ^{n} \theta d \theta=-\frac{1}{n} \sin ^{n-1} \theta \cos \theta+\frac{n-1}{n} \int \sin ^{n-2} \theta d \theta$.
7. Bunny is a Calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod! These integration technics are soooo hard! There was this one problem where I tried, like, a substitution, but the tutor Daddy hired for me said that wasn't good because there wasn't an x in the numerator. How can that even be, that a problem is easier if there's an extra x in it?"

Help Bunny by giving a good example of an integral which is easier if the function has an x included in the numerator, and explaining why that makes it easier.
8. Evaluate $\int \frac{\left(x^{2}+11 x\right) d x}{(x-1)(x+1)^{2}}$.
9. Set up an integral and evaluate it to find the volume of the solid resulting from rotating the region between $y=\sin x$ and the x-axis on the interval $[0, \pi]$ around the x-axis.
10. Evaluate $\int \frac{x^{2}}{\sqrt{a^{2}-x^{2}}} d x$. [Hint: If it's too daunting with the a, do it with a 1 there.]

Extra Credit (5 points possible): Evaluate $\int \frac{1}{a^{3}+u^{3}} d x .\left[\right.$ Hint: $\left.a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]$

