Exam 3 Calc 2 4/1/2016

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Determine the value of $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$.
2. Determine whether $\sum_{n=1}^{\infty} \frac{n}{n^{3}+3}$ converges or diverges.
3. Determine whether $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges or diverges.
4. Set up an integral and evaluate it to find the arc length of $y=x^{3 / 2}$ on the interval [1,2].
5. Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$ converges or diverges.
6. Find the Taylor series for $f(x)=\sin x$ centered at $x=\pi / 2$.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Well, crap. This series stuff is hard. I don't even know what half of it means. What the heck is the difference between absolute convergence and conditional convergence anyway? I mean, either it converges or not, right?"

Help Biff by explaining clearly the difference between conditional and absolute convergence.
8. Use a Taylor series with at least 3 nonzero terms to approximate $\ln 0.9$.
10. Determine the interval of convergence of the series $\sum_{n=1}^{\infty} n(x-4)^{n}$.

Extra Credit (5 points possible):
Find the sum of the series $\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\ldots$.

