Exam 3 Calc 2 4/22/2016

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Write an equation for the ellipse shown:

2. a) Convert the point with rectangular coordinates $(5,5)$ into polar form.
b) Convert the point with rectangular coordinates $(0,3)$ into polar form.
c) Convert the point with rectangular coordinates $(0,3)$ into a different polar form than you gave in part b.
d) Convert the point with polar coordinates $(2, \pi / 2)$ into rectangular form.
e) Convert the point with polar coordinates $(1,3 \pi / 4)$ into rectangular form.
3. Use separation of variables to find a general solution to the differential equation $2 y^{\prime}+5 y=4$.
4. Consider the parametric curve $c(t)=\left(t^{3}+t, t^{2}-1\right)$. Calculate $d y / d x$ at the point where $t=3$.
5. Find an equation for the hyperbola with vertices $(\pm 8,0)$ and asymptotes $y= \pm 3 / 4 x$.
6. Biff is a calculus student at Enormous State University, and he has a question. Biff says "Dude, I love these parametric things, 'cause it's like all you gotta do is have your calculator graph 'em, you know? But for this one I think it screwed up somehow, 'cause it's $x=3 \cos t$ and $y=3 \sin t$, but the graph comes up like kind of a circle. That can't be right, 'cause trig stuff is all wavy, right?"

Help Biff by explaining what's going on.
7. Consider the ellipse given by $c(t)=(3 \cos t, 2 \sin t)$. Set up an integral for the length of the first-quadrant portion of this curve.
8. Consider the ellipse given by $c(t)=(3 \cos t, 2 \sin t)$. Find the area of the region inside it.
9. Consider the family of parametric curves given by $x=a t^{2}$ and $y=t^{3}-3 t$. For which value(s) of a will the curve be perpendicular to itself at the point where it crosses itself?
10. For Earth Day, Jon is making a large green sign whose outline will be the region inside at least one of the curves $r=1+\cos 2 \theta$ and $r=1-\cos 2 \theta$ (with units in meters), so the region shown in green below. Set up integrals for the area of this region.

Extra Credit (5 points possible):
Evaluate your integrals from \#10.

