The Test for Divergence: If $\sum a_{n}$ is a series for which $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ diverges.

The Geometric Series Test: If a series is of the form $\sum_{n=1}^{\infty} a \cdot r^{n-1}$, then the series converges $\left(\right.$ to $\left.\frac{a}{1-r}\right)$ if and only if $|r|<1$.

The Integral Test: Suppose $\mathrm{f}(x)$ is a continuous, positive, decreasing function on $[\mathrm{c}, \infty)$ for some $c \geq 0$, with $a_{n}=\mathrm{f}(n)$ for all n :

- If $\int_{c}^{\infty} \mathrm{f}(x) d x$ converges, then Σa_{n} converges also.
- If $\int_{c}^{\infty} \mathrm{f}(x) d x$ diverges, then Σa_{n} diverges also.

The Comparison Test: If Σa_{n} and Σb_{n} are both series with their terms all positive, and:

- $a_{n} \leq b_{n}$ with Σb_{n} convergent, then Σa_{n} converges also.
- $\quad a_{n} \geq b_{n}$ with Σb_{n} divergent, then Σa_{n} diverges also.

The Limit Comparison Test: If Σa_{n} and Σb_{n} are both series with their terms all positive, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L
$$

for some finite, positive number L, then either both series converge or both series diverge.

The Ratio Test: If Σa_{n} is a series for which

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

then:

- If $L<1$ then the series converges absolutely.
- If $L>1$ (or if the limit diverges to $+\infty$) then the series diverges.

The Alternating Series Test: If $\Sigma(-1)^{n+1} a_{n}$, with $a_{n} \geq 0$ for all n, is a series for which

- the sequence $\left\{a_{n}\right\}$ tends to zero, i.e. $\lim _{n \rightarrow \infty} a_{n}=0$
- the sequence $\left\{a_{n}\right\}$ is decreasing, i.e. $a_{n+1} \leq a_{n}$ for all n then the series converges.

