Exam 2 Differential Equations 3/4/16

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Find a solution to the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=3 x \\
& \frac{d y}{d t}=\quad-2 y
\end{aligned}
$$

2. Determine whether $x(t)=4 e^{4 t}, y(t)=e^{4 t}$ is a solution to the system

$$
\begin{aligned}
& \frac{d x}{d t}=3 x+4 y \\
& \frac{d y}{d t}=x+0 y
\end{aligned}
$$

3. Construct a system of differential equations, with all coefficients representing positive constants, to model the interaction of two populations where:

- The first population would experience exponential growth in the absence of the second
- Interaction between the two populations hurts the first population
- The second population would experience logistic growth in the absence of the first
- Interaction between the two populations benefits the second population

4. Find all equilibria of the system of differential equations:

$$
\begin{aligned}
& \frac{d r}{d t}=0.01 r(25-r)-0.04 r m \\
& \frac{d y}{d t}=-0.2 \mathrm{~m}+0.02 \mathrm{rm}
\end{aligned}
$$

5. Consider the system

$$
\begin{aligned}
& \frac{d S}{d t}=-0.1 S I \\
& \frac{d I}{d t}=0.1 S I-0.5 I . \\
& \frac{d R}{d t}=0.25 I
\end{aligned}
$$

Use Euler's method with a step size of $\Delta t=0.1$ to project $S(0.1), I(0.1)$, and $R(0.1)$ if $S(0)=$ $60, I(0)=4$, and $R(0)=0$.
6. Consider the equation

$$
\frac{d^{2} y}{d t^{2}}+\frac{k}{m} y=0
$$

for the motion of a simple harmonic oscillator. Consider the function $y(t)=\cos \beta t$. Under what conditions on β is $y(t)$ a solution?
7. Suppose $y(t)$ is a solution to the differential equation

$$
\frac{d^{2} y}{d t^{2}}+\alpha \frac{d y}{d t}+\beta y=0
$$

What can you say about $k \cdot y(t)$, where k is a constant?
8. Find a non-trivial solution to the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+3 y \\
& \frac{d y}{d t}=5 x
\end{aligned}
$$

9. Find a general solution to the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+3 y \\
& \frac{d y}{d t}=-4 y
\end{aligned}
$$

10. Find a general solution to the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+3 y \\
& \frac{d y}{d t}=\alpha y
\end{aligned}
$$

