Examlet 1 Foundations of Advanced Math 2/4/16

1. Show that the sum of two odd integers is even.
2. Determine whether $P \vee Q$ is logically equivalent to $\neg(\neg P \wedge \neg Q)$.
3. If $a \equiv_{n} 1$, and $b \equiv_{n} 1$ then $a \equiv_{n} b$.
4. $\sqrt{3}$ is irrational.
5. Recall that if C is a set of real numbers, we say b is an upper bound for C iff $\forall x \in C, b \geq x$. Show that any collection of exactly n distinct real numbers (where n is a natural number) has an upper bound.
