1. Show that the sum of two odd integers is even.

2. Determine whether $P \lor Q$ is logically equivalent to $\neg(\neg P \land \neg Q)$.

3. If $a \equiv_n 1$, and $b \equiv_n 1$ then $a \equiv_n b$.

4. $\sqrt{3}$ is irrational.

5. Recall that if *C* is a set of real numbers, we say *b* is an **upper bound** for *C* iff $\forall x \in C, b \ge x$. Show that any collection of exactly *n* distinct real numbers (where *n* is a natural number) has an upper bound.