1. a) State the definition of an injection.

b) State the definition of a surjection.

c) State the definition of equipollent sets.

d) State the definition of a denumerable set.

e) State the definition of a countable set.

2. a) If $f: A \rightarrow B$ has an inverse function g, then g has f as an inverse function also.

b) Give an example of functions $f: A \rightarrow B$ and $g: B \rightarrow A$ where $\exists a \in A$ such that $g \circ f(a) = a$, but g is not an inverse function for f.

3. If $f: A \to B$ and $g: B \to C$ are injective functions, then $g \circ f$ is injective.

4. The set of integers, \mathbb{Z} , is denumerable.

5. If A is equipollent to B, and B is equipollent to C, then A is equipollent to C.