Do questions 1 through 7 and pick three of the remaining (lettered) questions for grading (check boxes of those you want graded or I roll dice). Each problem is worth 10 points. Show good justification for full credit. Dont panic.

1. (a) State the definition of a topology.
(b) Show that \mathscr{D} satisfies the definition of a topology, or explain why it doesn't.
2. (a) State the (topological) definition of continuity.
(b) Give an example of a function which is $\mathscr{H}-\mathscr{H}$ continuous but not $\mathscr{U}-\mathscr{U}$ continuous, or explain why it can't be done.
3. (a) State the (topological) definition of a closed set.
(b) Give an example of a set which is closed in \mathbb{R} with the \mathscr{C} topology.
4. (a) Given a function $f: A \rightarrow B$ and a set $V \subseteq B$, state the definition of $f^{-1}(V)$
(b) Give an example to show it can happen that $f^{-1}(f(U)) \neq U$.
5. Let $B=\{(a,+\infty): a \in \mathbb{Z}\}$.
(a) Is B a base for a topology on \mathbb{R} ?
(b) Is B a base for the \mathscr{C} topology on \mathbb{R} ?
6. Show that the composition of homeomorphisms is a homeomorphism. Feel free to note the portions that were taken care of in Foundations, but provide details on those that were not.
7. Let $\Lambda=\mathbb{Z}^{+}$and for each $i \in \Lambda$, let $X_{i}=\mathbb{R}$ and let $\mathscr{T}_{i}=\mathscr{U}$. Which of the following are open subsets of the product space $\times\left\{X_{i}: i \in \Lambda\right\}$? If a set is not open, explain why it is not.
(a) $\times\left\{U_{i}: i \in \Lambda\right\}$, where $U_{i}=(0,1)$ for each $i \in \Lambda$.
(b) $\times\left\{U_{i}: i \in \Lambda\right\}$, where $U_{i}=(0,1)$ is i is an odd integer and \mathbb{R} if i is an even integer.
(c) $\times\left\{U_{i}: i \in \Lambda\right\}$, where $U_{1}=(0,1)$ and $U_{i}=\mathbb{R}$ otherwise.
\square A. The collection $\mathscr{B}=\{\{x\}: x \in \mathbb{R}\}$ is a base for the usual topology on \mathbb{R}.
\square B. Let (X, \mathscr{T}) be a topological space with $A \subseteq X$ and $U \subseteq A$. The set U is \mathscr{T}-closed iff $U=W \cap A$ for some \mathscr{T}-closed set W.
\square C. Let (X, \mathscr{T}) and (Y, \mathscr{S}) be topological spaces. If A and B are closed subsets of X and Y respectively, then $A \times B$ is a closed subset of $X \times Y$.
$\square \mathrm{D}$. Let (X, \mathscr{T}) be a topological space. Let $A, B \subseteq X$.
(a) Prove that $(A \cap B)^{\prime} \subseteq A^{\prime} \cap B^{\prime}$.
(b) Give an example to show that $(A \cap B)^{\prime} \supseteq A^{\prime} \cap B^{\prime}$ does not hold.
$\square \mathrm{E}$. Let $A=[0,1) \cup(2,3]$ be a subset of $(\mathbb{R}, \mathscr{H})$.
(a) Find $\operatorname{Int}(A)$, and justify your answer well.
(b) Find $\mathrm{Cl}(A)$, and justify your answer well.
