You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit.

1. If A and B are sets and $A=B$, then $A-B=\varnothing$.
2. If A and B are sets and $A-B=\varnothing$, then $A=B$.
3. If both A and B are the empty set, then $A \times B=\varnothing$.
4. If A and B are sets and $A \times B=\varnothing$, then $A=\varnothing$ and $B=\varnothing$.
5. If A, B, and C are sets, then $A-(B-C)=(A-B)-C$.
6. If A and B are subsets of X and $A \cap B \neq \varnothing$, then $B \nsubseteq X-A$.
7. Let $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ be an indexed collection of sets. If $\bigcap\left\{A_{\alpha}: \alpha \in \Lambda\right\}=\varnothing$, then for any distinct α and β in $\Lambda, A_{\alpha} \cap A_{\beta}=\varnothing$.
8. Let $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ be an indexed collection of sets. If for any distinct α and β in Λ $A_{\alpha} \cap A_{\beta}=\varnothing$, then $\bigcap\left\{A_{\alpha}: \alpha \in \Lambda\right\}=\varnothing$.
9. If $f: X \rightarrow Y$ is a function and $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.
10. If $f: X \rightarrow Y$ is a one-to-one function and $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.
11. If $f: X \rightarrow Y$ is a function and V is a nonempty subset of Y, then $f^{-1}(V)$ is a nonempty subset of X.
12. If $f: X \rightarrow Y$ is an onto function and V is a nonempty subset of Y, then $f^{-1}(V)$ is a nonempty subset of X.
13. The inverse of the inverse of a one-to-one onto function is the original function.
14. Let $f: X \rightarrow Y$ be a function and let A and B be subsets of Y. If $f^{-1}(A)=f^{-1}(B)$, then $A=B$.
15. If $f: X \rightarrow Y$ is a function, then $f(X)=Y$.
16. If $f: X \rightarrow Y$ is onto, then $f(X)=Y$.
17. Inverse images of sets are only defined for one-to-one functions.
18. If $f: X \rightarrow Y$ is a function, then $f^{-1}(Y)=X$.
19. If $f: X \rightarrow Y$ is a function and U and V are subsets of X, then $f(U \cap V)=f(U) \cap f(V)$.
20. If $f: X \rightarrow Y$ is a function and U and V are subsets of X, then $f(U \cap V) \subseteq f(U) \cap f(V)$.
