You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit.

- 1. If *A* and *B* are sets and A = B, then $A B = \emptyset$.
- 2. If *A* and *B* are sets and $A B = \emptyset$, then A = B.
- 3. If both *A* and *B* are the empty set, then $A \times B = \emptyset$.
- 4. If *A* and *B* are sets and $A \times B = \emptyset$, then $A = \emptyset$ and $B = \emptyset$.
- 5. If *A*, *B*, and *C* are sets, then A (B C) = (A B) C.
- 6. If *A* and *B* are subsets of *X* and $A \cap B \neq \emptyset$, then $B \nsubseteq X A$.
- 7. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be an indexed collection of sets. If $\bigcap \{A_{\alpha} : \alpha \in \Lambda\} = \emptyset$, then for any distinct α and β in Λ , $A_{\alpha} \cap A_{\beta} = \emptyset$.
- 8. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be an indexed collection of sets. If for any distinct α and β in Λ $A_{\alpha} \cap A_{\beta} = \emptyset$, then $\bigcap \{A_{\alpha} : \alpha \in \Lambda\} = \emptyset$.
- 9. If $f : X \to Y$ is a function and $f(x_1) = f(x_2)$, then $x_1 = x_2$.
- 10. If $f : X \to Y$ is a one-to-one function and $f(x_1) = f(x_2)$, then $x_1 = x_2$.
- 11. If $f : X \to Y$ is a function and *V* is a nonempty subset of *Y*, then $f^{-1}(V)$ is a nonempty subset of *X*.
- 12. If $f : X \to Y$ is an onto function and V is a nonempty subset of Y, then $f^{-1}(V)$ is a nonempty subset of X.
- 13. The inverse of the inverse of a one-to-one onto function is the original function.
- 14. Let $f : X \to Y$ be a function and let A and B be subsets of Y. If $f^{-1}(A) = f^{-1}(B)$, then A = B.
- 15. If $f : X \to Y$ is a function, then f(X) = Y.
- 16. If $f : X \to Y$ is onto, then f(X) = Y.
- 17. Inverse images of sets are only defined for one-to-one functions.
- 18. If $f : X \to Y$ is a function, then $f^{-1}(Y) = X$.
- 19. If $f : X \to Y$ is a function and U and V are subsets of X, then $f(U \cap V) = f(U) \cap f(V)$.
- 20. If $f : X \to Y$ is a function and U and V are subsets of X, then $f(U \cap V) \subseteq f(U) \cap f(V)$.