You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit.

1. Does the set $\{(a,+\infty) \mid a \in \mathbb{R}\}$ form a topology on \mathbb{R} ?
2. [Baker 2.2.12] Determine if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\left\{\begin{aligned}
2 & \text { if } x \geq 1 \\
-2 & \text { if } x<1
\end{aligned}\right.
$$

is
(a) $\mathscr{U}-\mathscr{U}$ continuous
(b) $\mathscr{U}-\mathscr{H}$ continuous
(c) $\mathscr{U}-\mathscr{C}$ continuous
(d) $\mathscr{H}-\mathscr{U}$ continuous
(e) $\mathscr{H}-\mathscr{H}$ continuous
(f) $\mathscr{C}-\mathscr{H}$ continuous
(g) $\mathscr{C}-\mathscr{C}$ continuous.
3. [Baker 2.3.13] Let U be a closed set and let V be an open set in a topological space. Show that $U-V$ is closed and that $V-U$ is open.
4. [Baker 2.3.14] Let A and B be subsets of a topological space (X, \mathscr{T}). Show that $(X-\mathrm{Cl}(A)) \cup(X-\mathrm{Cl}(B)) \subseteq X-\mathrm{Cl}(A \cap B)$. Find an example that shows these sets are not in general equal.
5. [Baker 2.3.15] Let A and B be subsets of a topological space (X, \mathscr{T}). Show that

$$
X-\mathrm{Cl}(A \cup B)=(X-\mathrm{Cl}(A)) \cap(X-\mathrm{Cl}(B)) .
$$

6. [Baker 2.4.10] Show that if A is a subset of a topological space, then $\operatorname{Int}(\operatorname{Int}(A))=$ $\operatorname{Int}(A)$.
