You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit.

1. The empty set is a closed subset of \mathbb{R} regardless of the topology on \mathbb{R}.
2. Any open interval is an open subset of \mathbb{R} regardless of the topology on \mathbb{R}.
3. Any closed interval is a closed subset of \mathbb{R} regardless of the topology on \mathbb{R}.
4. A half-open interval of the form $[a, b)$ is neither an open set nor a closed set regardless of the topology on \mathbb{R}.
5. If A is a subset of a topological space, then $A \subseteq \mathrm{Cl}(A)$.
6. If A is a subset of a topological space, then $A^{\prime} \subseteq A$.
7. For any closed subset A of a topological space, $A^{\prime} \subseteq A$.
8. If A is a subset of a topological space, then $\operatorname{Int}(A) \subseteq A$.
9. For any subset A of a topological space, $\mathrm{Bd}(A) \subseteq A$.
10. If A is a subset of a topological space, then $\mathrm{Bd}(A) \subseteq \mathrm{Cl}(A)$.
11. If A is a closed subset of a topological space, then $\operatorname{Bd}(A) \subseteq \mathrm{Cl}(A)$.
12. If A is a subset of a topological space, then $\operatorname{Int}(A) \subseteq \mathrm{Cl}(A)$.
13. The point 1 is a limit point of the set $[0,1)$ regardless of the topology on \mathbb{R}.
14. The point 2 is not a limit point of the set $[0,1)$ regardless of the topology on \mathbb{R}.
15. For any subset A of a topological space, $\operatorname{Ext}(A)=X-A$.
16. For any closed subset A of a topological space, $\operatorname{Ext}(A)=X-A$.
17. The collection $\mathscr{B}=\{\{x\}: x \in \mathbb{R}\}$ is a base for a topology on \mathbb{R}.
18. The collection $\mathscr{B}=\{\{x\}: x \in \mathbb{R}\}$ is a base for the usual topology on \mathbb{R}.
19. In a space (X, \mathscr{T}) any collection of open sets whose union equals X and that is closed under finite intersection is a base for \mathscr{T}.
20. There exists a topological space (X, \mathscr{T}) such that there is no base for \mathscr{T}.
21. There exists a topological space (X, \mathscr{T}) for which there is more than one base for \mathscr{T}.
