Problem Set 7Set Theory & TopologyDue 4/4/16

You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit.

- 1. [Baker 5.R.21] If \mathbb{R} has the usual topology an f is a one-to-one continuous function from \mathbb{R} onto \mathbb{R} , then f is a homeomorphism.
- 2. [Baker 6.1.16] Prove the Bolzano-Weierstrass Theorem (Theorem 6.1.22).
- 3. [Baker 6.1.17] For both the topologies \mathscr{H} and \mathscr{C} , describe the bounded infinite subsets of \mathbb{R} which do not have limit points.
- 4. [Baker 6.1.18] Give an example of each of the following:
 - (a) a topology \mathscr{T} on \mathbb{R} for which there is a closed and bounded subset *A* of \mathbb{R} that is not compact.
 - (b) a topology \mathscr{S} on \mathbb{R} for which there is a compact subset *A* of \mathbb{R} that is neither closed nor bounded.
- 5. [Baker 6.1.19] Prove that if (X, \mathscr{T}) is a compact topological space and \mathscr{S} is any topology on *X* that is coarser than \mathscr{T} , then (X, \mathscr{S}) is compact.
- 6. [Baker 6.1.20] Give an example to show that a set *X* can have topologies \mathscr{T} and \mathscr{F} with \mathscr{F} finer than \mathscr{T} , (*X*, \mathscr{T}) compact, and (*X*, \mathscr{F}) not compact.
- 7. [Baker 6.2.11] Complete the proof of Theorem 6.2.16.
- 8. [Baker 6.2.12] Prove Theorem 6.2.19.
- 9. [Baker 7.1.12] Show that the product of T_0 spaces is T_0 .
- 10. [Baker 7.1.12] Let *X* be a T_1 space with $A \subseteq X$. Prove that if *x* is a limit point of *A* and *U* is an open set containing *x*, the $U \cap A$ is an infinite set.
- 11. [Baker 7.1.14] Let X and Y be topological spaces and let $f : X \to Y$ be a function. The *graph* of f is the set $G(f) = \{(x, y) \in X \times Y : y = f(x)\}$. Prove that if f is continuous and Y is a T_2 -space, then G(f) is a closed subset of the product space $X \times Y$.