You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit.

1. [Baker 5.R.21] If \mathbb{R} has the usual topology an f is a one-to-one continuous function from \mathbb{R} onto \mathbb{R}, then f is a homeomorphism.
2. [Baker 6.1.16] Prove the Bolzano-Weierstrass Theorem (Theorem 6.1.22).
3. [Baker 6.1.17] For both the topologies \mathscr{H} and \mathscr{C}, describe the bounded infinite subsets of \mathbb{R} which do not have limit points.
4. [Baker 6.1.18] Give an example of each of the following:
(a) a topology \mathscr{T} on \mathbb{R} for which there is a closed and bounded subset A of \mathbb{R} that is not compact.
(b) a topology \mathscr{S} on \mathbb{R} for which there is a compact subset A of \mathbb{R} that is neither closed nor bounded.
5. [Baker 6.1.19] Prove that if (X, \mathscr{T}) is a compact topological space and \mathscr{S} is any topology on X that is coarser than \mathscr{T}, then (X, \mathscr{S}) is compact.
6. [Baker 6.1.20] Give an example to show that a set X can have topologies \mathscr{T} and \mathscr{F} with \mathscr{F} finer than $\mathscr{T},(X, \mathscr{T})$ compact, and (X, \mathscr{F}) not compact.
7. [Baker 6.2.11] Complete the proof of Theorem 6.2.16.
8. [Baker 6.2.12] Prove Theorem 6.2.19.
9. [Baker 7.1.12] Show that the product of T_{0} spaces is T_{0}.
10. [Baker 7.1.12] Let X be a T_{1} space with $A \subseteq X$. Prove that if x is a limit point of A and U is an open set containing x, the $U \cap A$ is an infinite set.
11. [Baker 7.1.14] Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a function. The graph of f is the set $G(f)=\{(x, y) \in X \times Y: y=f(x)\}$. Prove that if f is continuous and Y is a T_{2}-space, then $G(f)$ is a closed subset of the product space $X \times Y$.
