Problem Set 8 Set Theory & Topology Due 4/11/16

You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit.

- 1. [Baker 7.R.1] Any indiscrete topological space is not Hausdorff.
- 2. [Baker 7.R.2] Any indiscrete topological space with two or more points is not Hausdorff.
- 3. [Baker 7.R.3] Singleton subsets of T_2 -spaces are closed.
- 4. [Baker 7.R.4] Singleton subsets of T_1 -spaces are closed.
- 5. [Baker 7.R.5] Singleton subsets of T_0 -spaces are closed.
- 6. [Baker 7.R.6] Subspaces of regular spaces are regular.
- 7. [Baker 7.R.7] Subspaces of T_2 -spaces are T_2 -spaces.
- 8. [Baker 7.R.8] Closed subsets of normal spaces are normal.
- 9. [Baker 7.R.9] Every normal space is regular.
- 10. [Baker 7.R.10] Every normal space is a T_1 -space.
- 11. [Baker 8.1.8] Let (X, d) be a metric space and let $U \subseteq X$. Then U is open with respect to the metric topology iff for each $x \in U$, there exists r > 0 such that $B_r(x) \subseteq U$.
- 12. [Baker 8.1.9] If *d* is the metric on \mathbb{R} given by d(x, y) = |x y| for all $x, y \in \mathbb{R}$, then the corresponding metric topology for \mathbb{R} is \mathscr{U} .