Examlet 4a	Foundations of Advanced Math	4/14/17
------------	------------------------------	---------

1. (a) State the definition of a relation from *A* to *B*.

(b) Give an example of a relation from {1, 2, 3, 4} to {1, 2, 3, 4} which is not reflexive or symmetric, but is transitive.

- 2. Which of the following are partitions of $S = \{a, b, c, d, e\}$? Mark all which are.
 - $\Box \ \{\{a,b\},\{c,d,e\}\}$
 - $\Box \{\{a\}, \{c\}\}$
 - $\Box \{a, b, c, d, e\}$
 - $\Box \ \{a,b,c,d\}, \{e\}$
 - $\Box \{\{a, b, c, d\}, \{e\}\}$

3. Express the definition of a surjective function in terms of ordered pairs.

4. Let *S* be a set and Π a partition of *S* defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$. Then \sim is a reflexive relation. 5. (a) State the definition of a graph.

(b) Suppose *G* is a graph with every vertex having degree at least 1. Create a relation ~ on the vertices of *G* by saying that two vertices v_1 , v_2 of *G* are related iff there exists a walk from v_1 to v_2 which has no edge used more than once. Is ~ reflexive? Symmetric? Transitive?