Examlet 4b Foundations of Advanced Math 4/14/17

1. (a) State the definition of a relation from A to B.
(b) Give an example of a relation from $\{1,2,3,4\}$ to $\{1,2,3,4\}$ which is reflexive and symmetric, but is not transitive.
2. Which of the following are partitions of $S=\{a, b, c, d, e\}$? Mark all which are.
$\square\{\{a, b, c\},\{d, e\}\}$
$\square\{\{a, b, d\},\{c\}\}$
$\square\{\{a, b\},\{c, d, e\},\{ \}\}$
$\square\{a, c, d\},\{b, e\}$
$\square\{\{a, b\},\{b, c\},\{c, d\},\{e\}\}$
3. Express the definition of a surjective function in terms of ordered pairs.
4. Let S be a set and Π a partition of S defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$. Then \sim is a reflexive relation.
5. (a) State the definition of a graph.
(b) Suppose G is a graph with every vertex having degree at least 1 . Create a relation \sim on the vertices of G by saying that two vertices v_{1}, v_{2} of G are related iff there exists a walk from v_{1} to v_{2} which has no edge used more than once. Is ~ reflexive? Symmetric? Transitive?
