1. (a) State the definition of a relation from *A* to *B*.

(b) Give an example of a relation from {1, 2, 3, 4} to {1, 2, 3, 4} which is reflexive and symmetric, but is not transitive.

- 2. Which of the following are partitions of $S = \{a, b, c, d, e\}$? Mark all which are.
 - $\Box \{\{a,b,c\},\{d,e\}\}$
 - $\square \{\{a,b,d\},\{c\}\}$
 - $\Box \{\{a,b\},\{c,d,e\},\{\}\}\}$
 - $\square \{a,c,d\},\{b,e\}$
 - $\Box \ \{\{a,b\},\{b,c\},\{c,d\},\{e\}\}\$

3. Express the definition of a surjective function in terms of ordered pairs.

4. Let <i>S</i> be a set and Π a partition of <i>S</i> defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$. Then \sim is a reflexive relation.		

5.	(a)	State the definition of a graph.
	(b)	Suppose G is a graph with every vertex having degree at least 1. Create a relation \sim on the vertices of G by saying that two vertices v_1, v_2 of G are related iff there exists a walk from v_1 to v_2 which has no edge used more than once. Is \sim reflexive? Symmetric? Transitive?