Each problem is worth 2 points. You are welcome to discuss these problems with anyone and everyone, but must write up your own final submission without reference to any sources other than the textbook and instructor.

Rubric:

0.5 points	At least some attempt
1.0 points	At least some conclusion with some legitimacy has been reached and conveyed
1.5 points	At least some conclusions with general legitimacy have been reached and
	conveyed well with both verbal and graphic means
2.0 points	Complete conclusions have been reached and conveyed well with both verbal and
	graphic means

- 1. Use GeoGebra to explore what happens when you compose two translations. Write a brief description of what you find. Be sure to address whether distances remain fixed, whether the composite transformation has any fixed points, and whether there is a simpler way to describe the transformation.
- 2. Use GeoGebra to explore what happens when you compose two rotations. Consider both the case where the rotations have the same center and where the centers are different. Write a brief description of what you find. Be sure to address whether distances remain fixed, whether the composite transformation has any fixed points, and whether there is a simpler way to describe the transformation.
- 3. Use GeoGebra to explore what happens when you compose two reflections across lines that admit a common perpendicular. Write a brief description of what you find. Be sure to address whether distances remain fixed, whether the composite transformation has any fixed points, and whether there is a simpler way to describe the transformation.
- 4. Use GeoGebra to explore what happens when you compose two reflections across lines that do not admit a common perpendicular. Write a brief description of what you find. Be sure to address whether distances remain fixed, whether the composite transformation has any fixed points, and whether there is a simpler way to describe the transformation.
- 5. Use GeoGebra to explore what happens when you compose three reflections across lines l, m, and n for which $l \perp m$ and $m \perp n$. Write a brief description of what you find. Be sure to address whether distances remain fixed, whether the composite transformation has any fixed points, and whether there is a simpler way to describe the transformation.