Exam $1 \quad$ Calculus $2 \quad 1 / 31 / 18$

Each problem is worth 10 points. For full credit provide good justification for your answers.

1. Evaluate

$$
\int \frac{2+x^{2}}{1+x^{2}} d x
$$

2. Evaluate

$$
\int x e^{x} d x
$$

3. Evaluate

$$
\int x^{2} \sqrt{x^{3}-8} d x
$$

4. Evaluate

$$
\int_{3}^{\infty} \frac{1}{(x-2)^{3 / 2}} d x
$$

5. Evaluate

$$
\int \sec ^{4} \theta \tan \theta d \theta
$$

6. Evaluate

$$
\int_{0}^{1} \frac{2}{2 x^{2}+3 x+1} d x
$$

7. Biff is a Calculus student at Enormous State University, and he's having some trouble. Biff says "Dude, Calc is tough! I thought I had it all figured out, but I guess it's just too much for me. We had this assignment and I, like, outsourced it to Mathematica, right? So for this one where we were supposed to integrate 1 over $3 x-2$, Mathematica said $\frac{1}{3} \ln (3 x-2)$, so I wrote that down. But the grader took off points and wrote this nasty note about something general and some domain thing, and about how even a computer could do as well as I did, like that was a bad thing. But dude, I think computers are automatically right, right?"
Help Biff out by explaining what shortcomings there might be to his answer, and how he should improve it.
8. Derive the reduction formula

$$
\int \sec ^{n} u d u=\frac{1}{n-1} \tan u \sec ^{n-2} u+\frac{n-2}{n-1} \int \sec ^{n-2} u d u
$$

9. It turns out there's a reason to care about $\int_{-r}^{r} \frac{r}{\sqrt{r^{2}-x^{2}}} d x$. Find the value of this integral.
10. Derive Line 23 from the Table of Integrals:

$$
\int \frac{\sqrt{a^{2}+u^{2}}}{u} d u=\sqrt{a^{2}+u^{2}}-a \ln \left|\frac{a+\sqrt{a^{2}+u^{2}}}{u}\right|+C
$$

Extra Credit [5 points possible]: Think about what happens when you add up numbers of the form $\frac{1}{n(n+1)}$, for integer values of n that start with 1 and continue upward to some value k. What can you say about the result?

