Problem Set $2 \quad$ Calculus $2 \quad$ Due 2/16/18

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer.

1. Use an integral to show that the area of a circle with radius r is πr^{2}.
2. Use an integral to find the volume of a cap with height h of a sphere with radius r, as pictured in §7.2 \#33.
3. Use an integral to find the volume of the napkin ring from $\S 7.3$ \#42.
4. Do §7.4 \#34.

Problem Set $3 \quad$ Calculus $2 \quad$ Due 2/19/18

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer.

1. Use an integral to find the volume of a right circular cone with base of radius r and height h.
2. Use an integral to find the surface area of a right circular cone with base of radius r and height h.
3. Consider the region below $y=\frac{1}{x}$, above the x-axis, and to the right of $x=1$. Use an integral to find the volume of the solid obtained by rotating this region around the x-axis.
4. Consider the region below $y=\frac{1}{x}$, above the x-axis, and to the right of $x=1$. Use an integral to find the surface area of the solid obtained by rotating this region around the x-axis.
