Pick one of the following sets of problems $(\alpha, \beta$, or γ) and do $1-4$. You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer.

α

1. Chester Bliss did pioneering work in probability during the 1920s and 30s dealing with agricultural research including efficacy of pesticides. He investigated the dose of a pesticide required to kill a given percentage of a treated insect population, and designated the dose required to kill, say, 80% of the treated insects as LD-80. Suppose that the probability that a dose of $x \mathrm{mg}$ of pesticide kills a given member of an insect population is given by $p(x)=0.0001 x e^{-0.01 x}$ for positive values of x. What percentage of the population is killed by a dose of 100 mg ?
2. What is LD-80 for the distribution from problem 1?
3. What is LD-90 for the distribution from problem 1? What is LD-99? Is there a point?
4. Compute \bar{x} for the distribution from problem 1 . What does it mean?

$$
\beta
$$

1. Compute the total value of an income stream that begins at $\$ 20,000 /$ year and increases exponentially by $3 \% /$ year over a 15 -year period.
2. Compute the total value of 20 payments, beginning at $\$ 3000$ and each increasing 3% over the previous.
3. Compute the future value (assuming 5% continuous interest) of an income stream of $\$ 50,000 /$ year over 20 years.
4. In class we used the fact that $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}=e^{r t}$. Show why this is true.

$$
\gamma
$$

The gamma function is defined by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

1. Find $\Gamma(1), \Gamma(2), \Gamma(3)$, and $\Gamma(4)$.
2. Show that $\Gamma(x+1)=x \Gamma(x)$.
3. Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
4. Find $\Gamma\left(\frac{3}{2}\right)$.
