1. If $a \equiv_3 2$, then $a^2 \equiv_3 1$.

2. Consider each of the following statements. Tell whether each is true or false, and justify your conclusion.

(a)
$$(\exists x \in \mathbb{R})(\exists y \in \mathbb{R}), x + y = 0.$$

(b)
$$(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}), x + y = 0.$$

(c)
$$(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}), x + y = 0.$$

3. For any $n \in \mathbb{N}$, $3 \mid n^3 - n$

4. Determine whether the statements $(P \land Q) \lor R$ and $(P \land R) \lor (Q \land R)$ are logically equivalent.

5. $\sqrt{6}$ is irrational.