Examlet 4Foundations of Advanced Math4/16/18

- 1. Consider the relation ~ on \mathbb{Z} defined by $a \sim b \Leftrightarrow 3|(b-a)$.
 - (a) Determine whether \sim is reflexive.

(b) Determine whether \sim is symmetric.

(c) Determine whether \sim is transitive.

- 2. Consider the relation on \mathbb{N} defined by $a \approx b \Leftrightarrow b = n \cdot a$ for some $n \in \mathbb{N}$.
 - (a) Determine whether \approx is reflexive.

(b) Determine whether \approx is symmetric.

(c) Determine whether \approx is transitive.

3. Consider the relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 5), (4, 4), (5, 3), (5, 5)\}$. Give the equivalence classes of *R* and the partition associated with *R*.

- 4. We say that two vertices v_1 and v_2 of a graph *G* are **on a common cycle of** $G \Leftrightarrow \exists$ a cycle including v_1 and v_2 .
 - (a) The relation of being on a common cycle of a graph is reflexive.

(b) The relation of being on a common cycle of a graph is symmetric.

(c) The relation of being on a common cycle of a graph is transitive.

5. The number of edges in a tree with *n* vertices is ______.[Yes, you need to justify your answer.]