Midterm Exam ASet Theory & Topology3/2/18

Do questions 1 through 7 and pick three of the remaining (lettered) questions for grading (check boxes of those you want graded or I roll dice). Each problem is worth 10 points. Show good justification for full credit. Dont panic.

1. State the definition of a topology.

2. (a) State the (topological) definition of continuity.

(b) Give an example of a function which is $\mathscr{U} - \mathscr{U}$ continuous but not $\mathscr{C} - \mathscr{C}$ continuous, or explain why it can't be done.

3. (a) State the (topological) definition of a closed set.

(b) Give three examples of sets which are both open and closed in $(\mathbb{R}, \mathcal{H})$.

4. (a) State the definition of a homeomorphism.

(b) Show that in $(\mathbb{R}, \mathcal{U})$, the interval (a, b) is homeomorphic to \mathbb{R} .

5. Let (X, \mathscr{T}) and (Y, \mathscr{S}) be topological spaces. If *A* and *B* are closed subsets of *X* and *Y*, respectively, then $A \times B$ is a closed subset of $X \times Y$.

6. Show that the composition of homeomorphisms is a homeomorphism. Feel free to note the portions that were taken care of in Foundations, but provide details on those that were not.

- 7. Let $\Lambda = \mathbb{Z}^+$ and for each $i \in \Lambda$, let $X_i = \mathbb{R}$ and let $\mathscr{T}_i = \mathscr{U}$. Which of the following are closed subsets of the product space $\times \{X_i : i \in \Lambda\}$? Support your answer well.
 - (a) $\times \{U_i : i \in \Lambda\}$, where $U_i = [0, 1]$ for each $i \in \Lambda$.

(b) $\times \{U_i : i \in \Lambda\}$, where $U_i = [0, 1]$ if *i* is an odd integer and \mathbb{R} if *i* is an even integer.

(c) $\times \{U_i : i \in \Lambda\}$, where $U_1 = [0, 1]$ and $U_i = \mathbb{R}$ otherwise.

8. The space $(\mathbb{R}, \mathscr{U})$ is connected.

□ A. Let $(X_1, \mathscr{T}_1), (X_2, \mathscr{T}_2), ..., (X_n, \mathscr{T}_n)$ be topological spaces. Let F_i be a closed subset of X_i for each $i \in \{1, 2, ..., n\}$. Prove that $F_1 \times F_2 \times ... \times F_n$ is a closed subset of the product space $X_1 \times X_2 \times ... \times X_n$.

 $\square B. If \{(X_{\alpha}, \mathscr{T}_{\alpha}) : \alpha \in \Lambda\} \text{ is a collection of topological spaces, } \Lambda \text{ is infinite, and } A_{\alpha} \subseteq X_{\alpha} \text{ for each } \alpha \in \Lambda, \text{ then Int}(\times \{A_{\alpha} : \alpha \in \Lambda\}) = \times \{\text{Int}(A_{\alpha}) : \alpha \in \Lambda\}.$

 \Box C. Is the collection of intervals of the form (*x*, *x* + 2) for *x* \in \mathbb{R} a base for a topology?

 \Box D. For sets *A* and *B* in a topological space, $Cl(A) \cap Cl(B) = Cl(A \cap B)$.

 \Box E. Let (*X*, \mathscr{T}) be a topological space and let $A \subseteq X$. Then *A* is open iff A = Int(A).

 \square F. (\mathbb{R} , \mathscr{U}) is homeomorphic to the unit circle.