Problem Set 3 Set Theory & Topology Due 2/23/18

You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit. Four of these problems will be selected (by Jon) for grading, with each worth 5 points.

- 1. [Baker 3.2.7] Let $(X, \mathcal{T}), (Y, \mathcal{S})$, and (Z, \mathcal{F}) be topological spaces. If the function $f : (X, \mathcal{T}) \to (Y, \mathcal{S})$ and $g : (Y, \mathcal{S}) \to (Z, \mathcal{F})$ are continuous, then $g \circ f : (X, \mathcal{T}) \to (Z, \mathcal{F})$ is continuous.
- 2. [Baker 3.2.15] If $A \subseteq \mathbb{R}$, then a function $f : (A, \mathscr{U}_A) \to (\mathbb{R}, \mathscr{U})$ is continuous iff for each $x_0 \in A$ and each $\epsilon > 0$, there exists $\delta > 0$ such that $|x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon$, for all $x \in A$.
- 3. [Baker 4.1.1] Let *X* and *Y* be sets with *U* and *A* subsets of *X* and *V* and *B* subsets of *Y*. Prove that $(A \times B) \cap (U \times V) = (A \cap U) \times (B \cap V)$.
- 4. [Baker 4.1.1.5] Let *X* and *Y* be sets with *U* and *A* subsets of *X* and *V* and *B* subsets of *Y*. Prove that $(A \times B) \cup (U \times V) = (A \cup U) \times (B \cup V)$ or explain why not.
- 5. [Baker 4.1.11] Let (X, \mathscr{T}) and (Y, \mathscr{S}) be topological spaces with $A \subseteq X$ and $B \subseteq Y$. Prove or disprove the following: $Ext(A \times B) = Ext(A) \times Ext(B)$.
- 6. [Baker 4.2.8] Let $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2), ..., (X_n, \mathcal{T}_n)$ be topological spaces. If \mathcal{B}_i is a base for \mathcal{T}_i for each $i \in \{1, 2, ..., n\}$, then the collection $\mathbb{B} = \{B_1 \times B_2 \times ... \times B_n : B_i \in \mathcal{B}_i$ for $i = 1, 2, ..., n\}$ is a base for the product space $X_1 \times X_2 \times ... \times X_n$.