You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit. Four of these problems will be selected (by Jon) for grading, with each worth 5 points.

1. [Baker 3.2.7] Let $(X, \mathscr{T}),(Y, \mathscr{S})$, and (Z, \mathscr{F}) be topological spaces. If the function f : $(X, \mathscr{T}) \rightarrow(Y, \mathscr{S})$ and $g:(Y, \mathscr{S}) \rightarrow(Z, \mathscr{F})$ are continuous, then $g \circ f:(X, \mathscr{T}) \rightarrow(Z, \mathscr{F})$ is continuous.
2. [Baker 3.2.15] If $A \subseteq \mathbb{R}$, then a function $f:\left(A, \mathscr{U}_{A}\right) \rightarrow(\mathbb{R}, \mathscr{U})$ is continuous iff for each $x_{0} \in A$ and each $\epsilon>0$, there exists $\delta>0$ such that $\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$, for all $x \in A$.
3. [Baker 4.1.1] Let X and Y be sets with U and A subsets of X and V and B subsets of Y. Prove that $(A \times B) \cap(U \times V)=(A \cap U) \times(B \cap V)$.
4. [Baker 4.1.1.5] Let X and Y be sets with U and A subsets of X and V and B subsets of Y. Prove that $(A \times B) \cup(U \times V)=(A \cup U) \times(B \cup V)$ or explain why not.
5. [Baker 4.1.11] Let (X, \mathscr{T}) and (Y, \mathscr{S}) be topological spaces with $A \subseteq X$ and $B \subseteq Y$. Prove or disprove the following: $\operatorname{Ext}(A \times B)=\operatorname{Ext}(A) \times \operatorname{Ext}(B)$.
6. [Baker 4.2.8] Let $\left(X_{1}, \mathscr{T}_{1}\right),\left(X_{2}, \mathscr{T}_{2}\right), \ldots,\left(X_{n}, \mathscr{T}_{n}\right)$ be topological spaces. If \mathscr{B}_{i} is a base for \mathscr{T}_{i} for each $i \in\{1,2, \ldots, n\}$, then the collection $\mathbb{B}=\left\{B_{1} \times B_{2} \times \ldots \times B_{n}: B_{i} \in \mathscr{B}_{i}\right.$ for $i=1,2, \ldots, n\}$ is a base for the product space $X_{1} \times X_{2} \times \ldots \times X_{n}$.
