Examlet 1 Advanced Geometry 2/11/19

1. Let A =(0,0) and B = (2, 1), and let p be the taxicab metric.
a) Describe all points on AB.
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b) Describe all points on AB.




2. a) State the SAS Postulate.

(et theebe oo trianges ARBC and MDEE.
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b) Explain clearly why the SAS Postulate is important as an axiom for Neutral

Geometry.
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3. Recall the three axioms of Incidence Geometry:

e Incidence Axiom 1: For every pair of distinct points P and Q there exists exactly
one line ¢ such that both P and Q lie on ¢.

e Incidence Axiom 2: For every line £ there exist at least two distinct points P
and Q such that both P and Q lie on ¢.

e Incidence Axiom 3: There exist three points that do not all lie on any one line.

a) Consider a regular tetrahedron, with the faces regarded as lines and the vertices
regarded as points. Which of the incidence axioms does this satisfy, and why?
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b) Consider a cube, with the faces regarded as lines and the vertices regarded as
points. Which of the incidence axioms does this satisfy, and why7
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c) Consider a regular dodecahedron, with the faces regarded as lines and the ver-
tices regarded as points. Which of the incidence axioms does this satisfy, and

why? .
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4.

a) Consider a regular tetrahedron, with the faces regarded as lines and the ver-
tices regarded as points. Which parallel postulates, if any, does it satisfy? Why?
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b) Consider a cube, with the faces regarded as lines and the vertices regarded as
points. Which parallel postulates, if any, does it satisfy? Why?
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c¢) Consider a regular dodecahedron, with the faces regarded as lines and the ver-
tices regarded as points. Which parallel postulates, if any, does it satisfy? Why?
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5. Provide good justifications in the blanks below for the corresponding statements:

Theorem: If AABC is a triangle and AB = A_C, then /ABC = /ACB

Statement

Reason

Let AABC be a triangle such that AB = AC.

Given

We must prove that ZABC = /ACB.

Because that’s what we must prove.

Let D be the point in the interior of ZBAC such that
—
AD is the bisector of ZBAC.
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There is a point E at which the ray AD intersects
the segment BC.
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Then ABAE = ACAE
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and so Z/ABE = /ACE.
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This completes the proof because ZACE = ZACB
and /ABE = /ABC. O
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