Examlet 2 Advanced Geometry 3/13/19

1. a) State the definition of a scalene triangle.
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b) State the definition of a quadrilateral.
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c) State the Saccheri-Legendre Theorem. -
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d) State the Scalene Inequality.

'QJ/C(,F’\,(& 4\« C‘“c—‘,(ez 'H/\ ) ) <l |

'Yéa{ - lies 000 05T Hae i€oter
(X\\C ! , P H c}
IA G OO vr' QAL
N N /wrt/u /(/(L.,« c&/)é’i‘ se +L‘~S‘

q‘ ¢ ot « e U \
—

¢) State the Universal Hyperbolic Theorem.
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2. Which of the following are equivalent (given the other postulates of neutral geometry) to the
Euclidean Parallel Postulate? Check all that apply.
[0 The double perpendicular construction
[0 The Saccheri-Legendre Theorem
Vi Existence of rectangles

¥ Euclid’s Postulate V

IZ( Converse of the Alternate Interior Angles Theorem
% 1£aABC is a triangle, then & (AABC) =180°.

[Z( Clairaut’s Axiom
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[0 The Universal Hyperbolic Theorem



3. Provide good justifications in the blanks below for the corresponding

statements:

Proposition: If { and (" are two lines cut by a transversal 7 in such a way
that a pair of alternate interior angles is congruent, then ( is parallel to {'.

Statement:

Reason:

Let 0 and (' be two lines cut by transversal ¢
such that a pair of alternate interior angles is
congruent.

Choose points 4, B, C,and A’, B’, C' as in the
figure above. Suppose ZA'B'B = /B'BC .

Pont constv Citem
Hypotusis

We must prove that ( is parallel to {’. Suppose
there exists a point D such that D lies on both ¢
and ('
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If D lies on the same side of ¢ as C, then
ZA'B'B is an exterior angle for aBB'D ,
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while ZB'BC is a remote interior angle for

aBB'D.
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This is a contradiction.
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In case D lies on the same side of ¢ as 4, then
ZB'BC is an exterior angle and ZA'B'B is

a remote interior angle for ABB'D ,
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and again we have a contradiction.
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Since D must lie on one of the two sides of ¢,
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we are forced to conclude that the proposition
holds.
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4. Provide good justifications in the blanks below for the corresponding statements:

Proposition: If there exists one line {,, an external point P, and at least two lines that pass
through P, and are parallel to {,, then for every line { and for every external point P there exist at
least two lines that pass through P and are parallel to (.

Statement: Reason:

S’pose there exists a line {,, an external point P,
and at least two lines that pass through P, and are Hypothesis
parallel to (.

Then the Euclidean Parallel Postulate fails. Coclidian Poelel forkslede
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Let { be a line and P an external point.
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We must prove that there are at least two lines
through P that are both parallel to (. Drop a ~ :
perpendicular to { through P and call the foot of of Verpindecolors
that perpendicular Q. e

gﬁ\&“"“f‘ 1~ U“‘V’(wf

Let m be the line through P that is perpendicular to | Ex,ebince 4 U unwguemers
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Choose a point R on { that is different from Qand  [Fuw drmce + Ouigucieess
let ¢ be the line through R that is perpendicularto . | ¢ /2 . M,

Drop a perpendicular from P to ¢ and call the foot Ersve mee & Unguencst
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Now [JPQRS is a Lambert quadrilateral. DL of tewbert Qued-t koo
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But [JPORS is not a rectangle (reason?), so ZQPS | Alrcady cad ne vree +‘”3‘ .
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so our proof is complete. Because our proof is complete.
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5. a) Proveor give a counterexample: If one interior angle of a triangle is obtuse, then both the
C

other interior angles are acute.
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b) Prove or give a counterexample: If one interior angle of a triangle is acute, then at least
one of the other interior angles is obtuse.
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