Chapter 4

Relations \& Graphs

4.1 Relations

Definition: Let A and B be sets. A relation from A to B is a subset of $A \times B$. When we have a relation from A to A we often call it a relation on A. When we have a relation R on $A \times B$, instead of writing $(x, y) \in R$ we often write $x R y$.

Example 1: We define a relation N on \mathbb{R} as follows: $N=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x=-y\}$. Then for instance $(-3,3) \in N$, which could also be written $-3 N 3$. This relation is a more formal version of what might be expressed as "is the negative of" as in, " -3 is the negative of 3. "

Example 2: We define a relation \sim on \mathbb{Z} as follows: $\sim=\{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid \exists k \in \mathbb{Z}, n-m=$ $2 k\}$. Then for instance $3 \sim 5$ and $6 \sim 20$, but it is not the case that $3 \sim 4$; which might naturally be denoted $3 \nsim 4$. You should recognize that $m \sim n$ when either both values are even or both values are odd.

Exercises

For each of the relations specified below:
(a) Pick an element t of the set in question and find (if possible) three other elements of the set which are related to it.
(b) For your element t from part a, find three other elements of the set which are not related to it.

1. Let \sim be the relation on \mathbb{N} defined by $x \sim y$ iff $x-y$ is throdd.
2. Let \approx be the relation on \mathbb{R} defined by $x \approx y$ iff $x-y \in \mathbb{Z}$.
3. Let \simeq be the relation on \mathbb{R} defined by $x \simeq y$ iff $x-y \in \mathbb{Q}$.
4. Let \cong be the relation on \mathbb{Z} defined by $x \cong y$ iff $|x-y|=5$.

5 . Let $\xlongequal[=]{\circ}$ be the relation on the set $P(\mathbb{R})$ of all polynomials with real coefficients defined by $f \doteq g$ iff f and g have a root in common.
6. Let \asymp be the relation on the set $R(I)$ of integrable functions from $[0,1]$ to \mathbb{R} defined by $f \asymp g$ iff $\int_{0}^{1} f(x) d x=\int_{0}^{1} g(x) d x$.
7. Let \succ be the relation on the set \mathbb{R} defined by $x \succ y$ iff $x>y+5$.
8. Let \ggg be the relation on the set \mathbb{R} defined by $x \gg y$ iff $x>3 y$.
9. Let \subseteq be the usual subset relation on $\mathcal{P}(\mathbb{N})$, the power set of the natural numbers.
10. Let \bowtie be the relation on $\mathcal{P}(\mathbb{N})$ defined by $A \bowtie B$ iff $A \cap B \neq \varnothing$.

4.2 Properties of Relations

Simply put, some relations are more interesting than others. This section explores properties that are often shared by some of the more interesting (and useful) relations used in mathematics.

Definition: A relation \sim on a set S is reflexive iff $\forall a \in S, a \sim a$.
Definition: A relation \sim on a set S is symmetric iff $\forall a, b \in S, a \sim b \Rightarrow b \sim a$.
Definition: A relation \sim on a set S is transitive iff $\forall a, b, c \in S, a \sim b \wedge b \sim c \Rightarrow a \sim c$.

Exercises

1. Determine whether each of the relations from Exercises $1-10$ in $\S 4.1$ is reflexive, symmetric, or transitive.
2. Consider the relation B on the set of all people defined by $a B b$ iff a is a brother of b. Is this relation reflexive, symmetric, or transitive?
3. Consider the relation S on the set of all people defined by $a S b$ iff a is a sibling of b. Is this relation reflexive, symmetric, or transitive?

For 4-11, let $S=\{a, b, c\}$. Give an example, if possible, of a relation on S which is:
4. Reflexive, symmetric, transitive.
5. Reflexive, symmetric, not transitive.
6. Reflexive, not symmetric, transitive.
7. Reflexive, not symmetric, not transitive.
8. Not reflexive, symmetric, transitive.
9. Not reflexive, symmetric, not transitive.
10. Not reflexive, not symmetric, transitive.
11. Not reflexive, not symmetric, not transitive.
12. If two relations R and S on A are reflexive, is $R \cup S$ reflexive? $R \cap S$?
13. If two relations R and S on A are symmetric, is $R \cup S$ symmetric? $R \cap S$?
14. If two relations R and S on A are transitive, is $R \cup S$ transitive? $R \cap S$?

4.3 Equivalence Relations

As noted in the last section, some relations are more useful than others. Particularly useful are ones with some common characteristics that in turn lead to other properties, as developed below.

Definition: A relation which is reflexive, symmetric, and transitive is called an equivalence relation.

Example 1: Congruence of triangles, which should be familiar to you from high school geometry, is an equivalence relation.

Example 2: We defined congruence modulo n in section 1.5; note that Exercises 14-16 in that section amount to a proof that this gives an equivalence relation on \mathbb{Z}.

Example 3: Exercises 1-3 in section 3.6 prove that equipollence provides an equivalence relation on the set of all subsets of any universal set.

Definition: Given a set S, an element $a \in S$, and an equivalence relation \sim on S, the set of elements of S that are related to a is called the equivalence class of a and denoted [a], i.e. $[a]=\{x \in S \mid x \sim a\}$.

Example 4: If we consider, as in Example 2 above, the equivalence relation of congruence modulo 2 , then the equivalence class of 1 includes 3 since $3-1=2$, and $2=2 \cdot 1$ where $1 \in \mathbb{Z}$. In fact, [1] is exactly the odd integers.

Example 5: For the equivalence relation of equipollence on some collection of sets mentioned in Example 3 above, the equivalence class of a set with, say, 2 elements will be all of the other sets having exactly 2 elements. If the collection of sets included \mathbb{R} and all of its subsets, then the equivalence class of \mathbb{R} itself would include the set of irrationals (among many others), and the equivalence class of \mathbb{N} would include \mathbb{Z} and \mathbb{Q} (among many others).

Definition: A set C of sets is pairwise disjoint iff $\forall S_{1}, S_{2} \in C, S_{1} \cap S_{2}=\varnothing$ or $S_{1}=S_{2}$. Definition: A partition of a set S is a set of pairwise disjoint non-empty subsets of S whose union is all of S.

Theorem 1: Let S be a set and Π a partition of S. The relation on S defined by $a \sim b$ iff $\exists P \in \Pi$ for which $a, b \in P$ is an equivalence relation.

Proof: Exercises 10-12.
Theorem 2: Let S be a set and \sim be an equivalence relation on S. The set $\{[a] \mid a \in S\}$ is a partition of S.

Proof: Exercise 13.

Exercises

1. Consider the relation $\|\|$ on \mathbb{Z} defined by $a\||\mid b$ iff $a-b$ is threven. Determine whether ||| is an equivalence relation.
2. Consider the relation \sim on \mathbb{Z} defined by $a \sim b$ iff $|a|=|b|$. Determine whether \sim is an equivalence relation.
3. Consider the relation \approx on $\mathbb{R} \times \mathbb{R}$ defined by $\left(x_{1}, y_{1}\right) \approx\left(x_{2}, y_{2}\right)$ iff $x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}$. Determine whether \approx is an equivalence relation.
4. Consider the relation \nearrow on $\mathbb{R} \times \mathbb{R}$ defined by $\left(x_{1}, y_{1}\right) \nearrow\left(x_{2}, y_{2}\right)$ iff $x_{1}>x_{2} \vee\left(x_{1}=\right.$ $x_{2} \wedge y_{1} \geq y_{2}$). Determine whether \nearrow is an equivalence relation.
5. For any of the relations in Exercises 1-4 which are equivalence relations, describe the equivalence classes.
6. A collection C of sets S_{i} indexed by some set I is pairwise disjoint iff $\bigcap_{i \in I} S_{i}=\varnothing$.
7. Let $S=\{1,2,3,4\}$. Then $R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ is a relation on S. Write the equivalence classes of S associated with R.
8. Let $S=\{1,2,3,4\}$. Suppose that \sim is an equivalence relation with $1 \sim 2 \sim 3$, but $1 \nsim 4$. What is the partition associated with \sim ?
9. Let $S=\{1,2,3,4\}$. Suppose that \sim is an equivalence relation with $1 \sim 4$. What are the possible partitions associated with \sim ?
10. Show that the relation defined in Theorem 1 is reflexive.
11. Show that the relation defined in Theorem 1 is symmetric.
12. Show that the relation defined in Theorem 1 is transitive.
13. Prove Theorem 2.

4.4 Functions as Relations

Chapter 3 was devoted to functions (and their implications via equipollence), but only gave a limited version of what functions actually are. This section gives the mature version.

Definition: A relation R from A to B is a function from A to B iff for all $a \in A$ there exists a unique $b \in B$ for which $(a, b) \in R$. Due to this uniqueness we often write $R(a)=b$ when $(a, b) \in R$.

While technically it's improper to give a new definition of a term that was previously defined (in section 3.1), in fact our previous definition was vague on exactly the point this new version allows us to make precise. Before there was reference to a "rule" without any specification of what might be allowable as a rule (can you roll dice, for instance?). This new version specifies, and in terms of material (set theory) that we have previously developed.

Example 1: Consider $f=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}=y\right\}$ as a function from \mathbb{R} to \mathbb{R}. This is the standard parabola familiar to all Calc 1 students, but presented in a more formal manner.

Example 2: Consider $i_{A}=\{(a, a) \mid a \in A\}$ as a function from A to A. This is the identity function on A defined in section 3.1, now presented in a more sophisticated way.

Exercises

1. Express the constant function $f(x)=c$ from \mathbb{R} to \mathbb{R} formally as a set of ordered pairs.
2. Express the inclusion function from A to B formally as a set of ordered pairs.
3. Express the definition of an even function in terms of ordered pairs.
4. Express the definition of an odd function in terms of ordered pairs.
5. Express the definition of an increasing function in terms of ordered pairs.
6. Express the definition of a decreasing function in terms of ordered pairs.
7. Express the definition of a bounded function in terms of ordered pairs.
8. Express the definition of the sum of two functions in terms of ordered pairs.
9. Express the definition of the product of two functions in terms of ordered pairs.
10. Express the definition of the composition of two functions in terms of ordered pairs.
11. Express the definition of a surjective function in terms of ordered pairs.
12. Express the definition of an injective function in terms of ordered pairs.

Foundations of Advanced Mathematics, v. 0.14
13. Express the definition of an inverse function in terms of ordered pairs.
14. Suppose that f and g are functions from A to B. Is $f \cup g$ a function from A to B ? $f \cap g$?

4.5 Graph Theory

First, a disclaimer: the graphs in the section are not the graphs of Calculus or high school algebra, but instead the graphs involved in the area of mathematics and computer science called graph theory. Although we will not explore this area in much depth, it fits naturally with the rest of the material in this chapter and is so widely seen in applications of mathematics to interesting situations that any serious math student should be acquainted with it.

Definition: A graph G is a set V of vertices along with a set E of edges, where each edge is a set containing exactly two vertices.

You should note that this is almost identical to the definition of a relation on a set V see Exercise 3.

Definition: The degree of a vertex v in a graph, sometimes denoted $\boldsymbol{d}(\boldsymbol{v})$, is the number of edges containing v.

Definition: A walk is a sequence $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{n}, v_{n}$, alternating vertices and edges, starting and ending with vertices, and where each edge is adjacent to the preceding and succeeding vertices. A cycle is a walk in which all vertices except the first and last are distinct, $v_{0}=v_{n}$ and $n \geq 3$.

Definition: A graph G is said to be connected iff every pair of vertices is joined by a walk.

Definition: A tree is a connected graph with no cycles.

Exercises

1. How many different graphs are there with three vertices?
2. How many different graphs are there with four vertices?
3. Describe the connection between a relation R on a set V and a graph G with the set V of vertices.
4. Create a relation based on a graph G by saying elements $v_{1}, v_{2} \in V$ are related iff there exists a walk from v_{1} to v_{2}. Is the resulting relation reflexive? Symmetric? Transitive?
5. The maximum possible number of edges in a graph with n vertices is \qquad
6. The number of edges in a tree with n vertices is \qquad
7. The minimum number of edges in a connected graph with n vertices is \qquad
8. The sum of the degrees of the vertices in a graph is twice the number of edges in the graph.
9. In any graph, the number of vertices of odd degree is even.
10. A graph with all vertices of degree 3 is cubic. Every cubic graph has an even number of vertices.
11. The maximum number of vertices of degree 1 in a tree with n vertices is \qquad
12. The minimum number of vertices of degree 1 in a tree with n vertices is \qquad
13. The maximum number of vertices of degree 2 in a tree with n vertices is \qquad
14. The minimum number of vertices of degree 2 in a tree with n vertices is \qquad
15. Find all trees with $n \leq 6$ vertices.
16. Find all trees with $n=7$ vertices.
17. Find all trees with $n=8$ vertices.
18. Any graph where each vertex has degree at least 2 is connected.
19. Any graph where each vertex has degree at least 3 is connected.
20. Any graph where each vertex is part of a cycle is connected.
21. Any graph where some vertex v_{0} is joined to each other vertex in the graph by a walk is connected.
22. If a graph G is connected, then the graph G^{\prime} having the same vertex set and an edge set with exactly one fewer element is also connected.
23. If a graph G is connected, then the graph G^{\prime} having a vertex set with exactly one fewer element and an edge set with all elements not including that removed vertex is also connected.
24. An Euler path in a graph G is a walk which passes through each edge of G exactly once. An Euler path exists in a connected graph G iff there are exactly two vertices of odd degree in G.
25. A planar graph is one which can be drawn in the plane without any edges crossing each other. In any planar, connected graph with v vertices and e edges, where $v \geq$ $3, e \leq 3 v-6$.
26. In any planar, connected graph with v vertices and e edges, dividing the plane into f distinct regions (including the exterior), $v-e+f=2$.
27. Let \boldsymbol{K}_{n} denote the complete graph on n vertices, a graph with n vertices and edges connecting every pair of vertices. Find the number of edges in K_{n}.
28. K_{4} is planar.
29. K_{5} is planar.
30. A subgraph H of a graph G is a graph with the vertex set of H a subset of the vertex set of G, and the edge set of H all edges from G for which both vertices are in the vertex set of H. A subgraph of a connected graph is connected.
31. If a graph G has all of its subgraphs connected, then G is connected.
32. A subgraph of a planar graph is planar.
33. If a graph G has all of its subgraphs planar, then G is planar.
34. A spanning tree for a graph G is a subgraph of G which is a tree containing all vertices of G. Any graph G has a spanning tree.
35. Any connected graph has a unique spanning tree.
36. Any graph with a spanning tree is connected.

4.6 Directed Graphs

A natural extension of the graphs considered in the previous section allows for one-way connections. The real-world situations that can be considered with such tools are abundant, but here we consider them abstractly.

Definition: A directed graph D (sometimes called a digraph) is a set V of vertices along with a set A of arcs, where each arc is an ordered pair of distinct vertices.

Obviously this is very similar to the definition of a graph, to the point where they can easily be confused - sometimes you need to read carefully to see which is being considered. We think of the arcs in a directed graph as one-way connections from the first vertex to the second vertex.

Definition: The outdegree of a vertex v in a directed graph, sometimes denoted $\boldsymbol{o d}(\boldsymbol{v})$, is the number of arcs with first element v. The indegree of a vertex v in a directed graph, sometimes denoted $\boldsymbol{i d}(\boldsymbol{v})$, is the number of arcs with second element v.

Definition: A walk in a directed graph is a sequence $v_{0}, a_{1}, v_{1}, a_{2}, v_{2}, \ldots, a_{n}, v_{n}$, alternating vertices and arcs, starting and ending with vertices, and where each arc has the preceding vertex as its first element and the succeeding vertix as its second element. A cycle is a walk in which $v_{0}=v_{n}$ and $n \geq 2$.

Definition: A directed graph D is said to be strongly connected iff every pair of points is joined by a walk.

Exercises

1. How many different directed graphs are there with two vertices?
2. How many different directed graphs are there with three vertices?
3. How many different directed graphs are there with four vertices?
4. The maximum possible number of arcs in a digraph with n vertices is \qquad
5. What is the relation between the total indegree and total outdegree of the vertices in a digraph?
6. The minimum number of arcs in a strongly connected digraph with n vertices is
7. Any digraph where each vertex has indegree at least 1 is connected.
8. Any digraph where each vertex has indegree and outdegree at least 1 is strongly connected.

4.7 More on Graphs

Definition: Given vertices u and v, the distance from u to v is the length of the shortest walk from u to v. The diameter, $\boldsymbol{d}(\boldsymbol{G})$, of a graph G is the maximum distance between points in G. The eccentricity, $\boldsymbol{e}(\boldsymbol{v})$, of a vertex v in a connected graph is the maximum distance between v and other points u in the graph. The radius, $\boldsymbol{r}(\boldsymbol{G})$, of a graph is the minimum eccentricity over all points in a graph. A point v is a central point if $e(v)=r(v)$. The center of a graph G is the set of all central points in G.

Exercises

1. Give an example of a graph with radius 3 and diameter 4 .
2. Give an example of a graph with radius 3 and diameter 3 .
3. Give an example of a graph with radius 3 and diameter 7 .
4. The diameter $d(G)$ of a graph G is the length of the longest vertex-disjoint walk between vertices in G.
5. Find the radius and diameter of K_{n}.
6. Find the radius and diameter of C_{n}.
7. How large can the center of a graph be?
8. How large can the center of a tree be?
9. What is the connection between eccentricity and diameter?
